336 The Monte Carlo method
[12] J. A. Barker, ‘Monte Carlo calculations of the radial distribution functions for a proton-electron
plasma,’Aust. J. Phys., 18 (1965), 119–33.
[13] P. C. Hohenberg and B. I. Halperin, ‘Theory of dynamic critical phenomena,’Rev. Mod. Phys.,
49 (1977), 435–79.
[14] K. Kawasaki, ‘Kinetics of Ising models,’ inPhase Transitions and Critical Phenomena(C. Domb
and M. S. Green, eds.). London, Academic Press, 1972.
[15] W. K. Hastings, ‘Monte Carlo methods using Markov chains, and their applications,’Biometrika,
57 (1970), 97–109.
[16] J. Liu and E. Luijten, ‘Rejection-free geometric cluster algorithm for complex fluids,’Phys. Rev.
Lett., 92 (2004), 035504.
[17] M. Creutz,Quarks, Gluons and Lattices. Cambridge, Cambridge University Press, 1983.
[18] W. W. Wood, ‘Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble,’
J. Chem. Phys., 48 (1968), 415–34.
[19] W. W. Wood, ‘NpT-ensemble Monte Carlo calculations for the hard disk fluid,’J. Chem. Phys.,
52 (1970), 729–41.
[20] I. R. McDonald, ‘Monte Carlo calculations for one- and two-component fluids in the isothermal–
isobaric ensemble,’Chem. Phys. Lett, 3 (1969), 241–3.
[21] I. R. McDonald, ‘NpT-ensemble Monte Carlo calculations for binary liquid mixtures,’Mol.
Phys., 23 (1972), 41–58.
[22] R. Eppenga and D. Frenkel, ‘Monte Carlo study of the isotropic and nematic phases of infinitely
thin hard platelets,’Mol. Phys., 52 (1984), 1303–34.
[23] G. E. Norman and V. S. Filinov, ‘Investigations of phase transitions by a Monte Carlo method,’
High Temp. (USSR), 7 (1969), 216–22.
[24] Z. W. Salsburg, J. D. Jacobson, W. Ficket, and W. W. Wood, ‘Application of the Monte Carlo
method to the lattice gas model. I. Two dimensional triangular lattice,’J. Chem. Phys., 30 (1959),
65–72.
[25] D. A. Chesnut, ‘Monte Carlo calculations for the two-dimensional triangular lattice gas:
supercritical region,’J. Chem. Phys., 39 (1963), 2081–4.
[26] Y. Saito and H. Müller-Krumbhaar, ‘2-Dimensional Coulomb gas: a Monte Carlo study,’Phys.
Rev. B, 23 (1981), 308–15.
[27] M. Mezei, ‘A cavity-based (TVμ) Monte Carlo method for the computer simulation of fluids,’
Mol. Phys., 40 (1980), 901–6.
[28] D. Frenkel, ‘Free energy computation and first-order phase transitions,’ inMolecular Dynamics
Simulation of Statistical Mechanical Systems(G. Ciccotti and W. G. Hoover, eds.),Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97, Amsterdam,
North-Holland, 1986, pp. 151–88.
[29] A. Z. Panagiotopoulos, ‘Direct determination of phase coexistence properties of fluids by Monte
Carlo simulation in a new ensemble,’Mol. Phys., 61 (1987), 813–26.
[30] A. Z. Panagiotopoulos, N. Quirke, and D. J. Tildesley, ‘Phase-equilibria by simulation in the
Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane
equilibria,’Mol. Phys., 63 (1988), 527–45.
[31] A. Z. Panagiotopoulos, ‘Adsorption and capillary condensation of fluids in cylindrical pores by
Monte Carlo simulation in the Gibbs ensemble,’Mol. Phys., 62 (1987), 701–19.
[32] D. Frenkel and B. Smit,Understanding Molecular Simulation. San Diego, Academic Press,
1996.
[33] C. H. Bennett, ‘Efficient estimation of free energy differences from Monte Carlo data,’J. Comput.
Phys., 22 (1976), 245–68.
[34] G. M. Torrie and J. P. Valleau, ‘Nonphysical sampling distributions in Monte Carlo free energy
estimation: umbrella sampling,’J. Comp. Phys., 23 (1977), 187–99.