478 Computational methods for lattice field theories
where
Knl=( 2 d+m^2 )δnl−
∑
μ
δn,l+μ. (15.46)
Defining Fourier-transformed fields as usual:
φk=
∑
n
φneik·n; (15.47a)
φn=
1
Ld
∑
k
φke−ik·n, (15.47b)
wherenandlrun from 0 toL−1, periodic boundary conditions are assumed, and
the components ofkassume the values 2mπ/L,m=0,...,L−1. Then we can
rewrite the free-field action as
SE=
1
2 L^2 d
∑
k
φkKk,−kφ−k, (15.48)
asKk,−kare the only nonzero elements of the Fourier transformKk,k′:
Kk,k′=Ld
[
−
∑
μ
2 cos(kμ)+( 2 d+m^2 )
]
δk,−k′
=Ld
[
4
∑
μ
sin^2
kμ
2
+m^2
]
δk,−k′ (15.49)
where the sum is now only over the positiveμdirections;kμis theμ-component
of the Fourier wave vectork.
The partition function
Z=
∫
[Dφk]exp
(
−
1
2 L^2 d
∑
k
φkKk,−kφ−k
)
=
∫
[Dφk]exp
(
−
1
2 L^2 d
∑
k
|φk|^2 Kk,−k
)
(15.50)
(up to a normalisation factor) is now a product of simple Gaussian integrals, with
the result (N=Ld):
Z=( 2 πN^2 )N/^2 /
∏
k
√
Kk,−k=( 2 πN^2 )N/^2 /
√
detK=( 2 πN^2 )N/^2
√
det(K−^1 ).
(15.51)
The partition function appears as usual in the denominator of expressions for expect-
ation values. We can calculate for example the two-point correlation or Green’s