478 Computational methods for lattice field theories
where
Knl=( 2 d+m^2 )δnl−∑
μδn,l+μ. (15.46)Defining Fourier-transformed fields as usual:
φk=∑
nφneik·n; (15.47a)φn=1
Ld∑
kφke−ik·n, (15.47b)wherenandlrun from 0 toL−1, periodic boundary conditions are assumed, and
the components ofkassume the values 2mπ/L,m=0,...,L−1. Then we can
rewrite the free-field action as
SE=1
2 L^2 d∑
kφkKk,−kφ−k, (15.48)asKk,−kare the only nonzero elements of the Fourier transformKk,k′:
Kk,k′=Ld[
−
∑
μ2 cos(kμ)+( 2 d+m^2 )]
δk,−k′=Ld[
4
∑
μsin^2kμ
2+m^2]
δk,−k′ (15.49)where the sum is now only over the positiveμdirections;kμis theμ-component
of the Fourier wave vectork.
The partition function
Z=
∫
[Dφk]exp(
−
1
2 L^2 d∑
kφkKk,−kφ−k)
=
∫
[Dφk]exp(
−
1
2 L^2 d∑
k|φk|^2 Kk,−k)
(15.50)
(up to a normalisation factor) is now a product of simple Gaussian integrals, with
the result (N=Ld):
Z=( 2 πN^2 )N/^2 /∏
k√
Kk,−k=( 2 πN^2 )N/^2 /√
detK=( 2 πN^2 )N/^2√
det(K−^1 ).(15.51)
The partition function appears as usual in the denominator of expressions for expect-
ation values. We can calculate for example the two-point correlation or Green’s