Chapter 11 Electron Transfer and Electrochemistry
G = -nΔFE
= -96,500nEq E
11.3Equation 11.3 indicates that the cell potential (
(^) E) becomes more positive as the free energy
change of the redox reaction becomes more
negative, which means that the amount of
work that can be done by
each
electron increases as the cell potential becomes more
positive.
A galvanic cell converts chemical potential energy into electrical energy by physically
separating the two half-reactions and incorpor
ating them into an electrical circuit.
Electrochemical reactions occur
at the surfaces of metals, the
electrodes
that are placed
into each half-cell. Electrons are injected into the external circuit in the oxidation half-cell (anode
) as the donor is oxidized and withdrawn from the circuit in the reduction half-cell
(cathode
) as the acceptor is reduced. A typical galvanic cell consists
of four components:
anode half-cell,
cathode half-cell
, liquid junction
, and
load
(^).
- The anode half-cell houses the oxidation couple (Fe
2+/Fe). The anode is always thehalf-cell in which oxidation occurs. Oxidation is the loss of electrons, so electrons leave
the anode during reaction. In the cell shown in Figure 11.2, the anode half-cell consists of a piece of metal (Fe) immersed in 1 M FeSO(Fe 42+). The metal serves as the anode(the electrode for the oxidation half-reaction). Iron atoms at the surface of the anode each give up two electrons, which leave the anode and enter the electrical circuit. The resulting Fe2+ ions enter the solution as the iron electrodedissolves. The iron anode is
anactive electrodebecause it participates in the reaction.++0.78 VFeFeFe + 2e
®2+-1Cu + 2eCu2+1-®AnodeCathode1-Cl1+K1 M FeSO41 M CuSO4CuSaltBridgeLo-Hi+
1-e1-e2e1-Figure 11.2 A galvanic cell The galvanic cell using the Cu2+/Cu and Fe2+/Fe redox couples.Negative charge flows counterclockwise through the above cell with the electrons carrying the charge in the external circuit and the ions carrying it through the solution and the salt bridge.- The cathode half-cell houses the reduction couple
(Cu2+/Cu). The cathode is alwaysthe half-cell in which reduction occurs.^ Reduction is the gain of
electrons, so electronsenter the cathode during reaction. In the cellshown in Figure 11.2, the cathode half-cellconsists of a piece of metal (Cu) immersed in 1 M CuSO(Cu 42+). The metal servers asthe cathode (the electrode for the reduction half-reaction). Electrons move from the anode to the cathode, where they transfer to Cu2+ ions in solution at the electrodesurface. The metallic copper that results from the reduction of the Cu2+ ions deposits onand becomes a part of the cathode, which is also an active electrode.- The liquid junction serves as a barrier to prevent mixing of the two half-cell solutions
while allowing free movement of ions between them. A common liquid junction is a porous polymeric or ceramic material that iscrisscrossed by very small, open channelsthrough which ions can freely migrate. A special type of liquid junction is the salt bridge,which typically contains a gelled saturated KCl solution held within an open glass tube. As with any liquid junction, the salt bridgeelectrically “connects” the two half-cellsolutions to allow charge to flow, while keeping the solutions physically separate. Each electron that flows through the circuit carries one unit of negative charge out of theanode compartment and into the cathode compartment. However, electrical neutralitymust be maintained in each of these compartments, and the salt bridge is a reservoir ofions that can be used to maintain electrical neutrality. An electron flowing into thecathode can be balanced by either an anion flowing out of the cathode and into the saltbridge or by a cation flowing out of the bridge and into the cathode. For example, when