Science - USA (2022-03-04)

(Maropa) #1

foundation for restoration practices that can
return resilience to the soil-plant ecosystem.


REFERENCESANDNOTES



  1. J. Clardy, M. A. Fischbach, C. R. Currie, The natural history of
    antibiotics.Curr. Biol. 19 , R437–R441 (2009). doi:10.1016/
    j.cub.2009.04.001; pmid: 19515346

  2. G. Schwilchet al., Operationalizing ecosystem services for
    the mitigation of soil threats: A proposed framework.
    Ecol. Indic. 67 , 586–597 (2016). doi:10.1016/
    j.ecolind.2016.03.016

  3. M. Cherlet, C. Hutchinson, J. Reynolds, J. Hill, S. Sommer,
    G. von Maltitz, Eds.,World Atlas of Desertification(Publication
    Office of the European Union, Luxembourg, 2018).

  4. United Nations Convention to Combat Desertification,
    The Global Land Outlook(ed. 1, 2017);www.unccd.int/
    actions/global-land-outlook-glo.

  5. J. K. Greenet al., Large influence of soil moisture on long-
    term terrestrial carbon uptake.Nature 565 , 476–479 (2019).
    doi:10.1038/s41586-018-0848-x; pmid: 30675043

  6. S. I. Seneviratneet al., Investigating soil moisture-climate
    interactions in a changing climate: A review.Earth Sci. Rev.
    99 , 125–161 (2010). doi:10.1016/j.earscirev.2010.02.004

  7. D. A. Robinsonet al., Experimental evidence for drought
    induced alternative stable states of soil moisture.Sci. Rep. 6 ,
    20018 (2016). doi:10.1038/srep20018; pmid: 26804897

  8. D. A. Robinsonet al., Global environmental changes impact
    soil hydraulic functions through biophysical feedbacks.
    Global Change Biol. 25 , 1895–1904 (2019). doi:10.1111/
    gcb.14626; pmid: 30900360

  9. R. M. B. Harriset al., Biological responses to the press and
    pulse of climate trends and extreme events.Nat. Clim. Change
    8 , 579–587 (2018). doi:10.1038/s41558-018-0187-9

  10. M. J. van der Ploeg, J. E. M. Baartman, D. A. Robinson,
    Biophysical landscape interactions: Bridging disciplines and
    scale with connectivity.Land Degrad. Dev. 29 , 1167– 1175
    (2018). doi:10.1002/ldr.2820

  11. J. H. Dane, R. J. Lenhard, inEncyclopedia of Soils in the
    Environment, D. Hillel, Ed. (Academic Press, 2005),
    pp. 231–237.

  12. N. G. McDowellet al., Predicting Chronic Climate-Driven
    Disturbances and Their Mitigation.Trends Ecol. Evol. 33 , 15– 27
    (2018). doi:10.1016/j.tree.2017.10.002; pmid: 29146414

  13. M. Reichsteinet al., Climate extremes and the carbon cycle.
    Nature 500 , 287–295 (2013). doi:10.1038/nature12350;
    pmid: 23955228

  14. C. S. Holling, Resilience and Stability of Ecological Systems.
    Annu. Rev. Ecol. Syst. 4 ,1–23 (1973). doi:10.1146/annurev.
    es.04.110173.000245

  15. J. M. Porr, J. Masoliver, K. Lindenberg, Bistability driven by
    dichotomous noise.Phys. Rev. A 44 , 4866–4875 (1991).
    doi:10.1103/PhysRevA.44.4866; pmid: 9906538

  16. M. Schefferet al., Anticipating critical transitions.Science
    338 , 344–348 (2012). doi:10.1126/science.1225244;
    pmid: 23087241

  17. R. D. Bardgett, T. Caruso, Soil microbial community
    responses to climate extremes: Resistance, resilience and
    transitions to alternative states.Philos. Trans. R. Soc. London
    Ser. B 375 , 20190112 (2020). doi:10.1098/rstb.2019.0112;
    pmid: 31983338

  18. E. K. Bünemannet al., Soil quality–A critical review.
    Soil Biol. Biochem. 120 , 105–125 (2018). doi:10.1016/
    j.soilbio.2018.01.030

  19. N. Fierer, S. A. Wood, C. P. Bueno de Mesquita, How
    microbes can, and cannot, be used to assess soil health.
    Soil Biol. Biochem. 153 , 108111 (2021). doi:10.1016/
    j.soilbio.2020.108111

  20. J. P. Schimel, Life in Dry Soils: Effects of Drought on Soil
    Microbial Communities and Processes.Annu. Rev. Ecol.
    Evol. Syst. 49 , 409–432 (2018). doi:10.1146/annurev-
    ecolsys-110617-062614

  21. J. Harris, Soil microbial communities and restoration ecology:
    Facilitators or followers?Science 325 , 573–574 (2009).
    doi:10.1126/science.1172975; pmid: 19644111

  22. E. K. Hallet al., Understanding how microbiomes influence
    the systems they inhabit.Nat. Microbiol. 3 , 977–982 (2018).
    doi:10.1038/s41564-018-0201-z; pmid: 30143799

  23. P. Trivedi, P. M. Schenk, M. D. Wallenstein, B. K. Singh, Tiny
    Microbes, Big Yields: Enhancing food crop production with
    biological solutions.Microb. Biotechnol. 10 , 999–1003 (2017).
    doi:10.1111/1751-7915.12804; pmid: 28840959

  24. I. Saha, S. Datta, D. Biswas, Exploring the Role of Bacterial
    Extracellular Polymeric Substances for Sustainable Development


in Agriculture.Curr. Microbiol. 77 , 3224–3239 (2020).
doi:10.1007/s00284-020-02169-y; pmid: 32876713


  1. F. T. Maestre, R. Solé, B. K. Singh, Microbial biotechnology
    as a tool to restore degraded drylands.Microb. Biotechnol.
    10 , 1250–1253 (2017). doi:10.1111/1751-7915.12832;
    pmid: 28834240

  2. E. R. J. Wubs, W. H. van der Putten, M. Bosch, T. M. Bezemer,
    Soil inoculation steers restoration of terrestrial ecosystems.
    Nat. Plants 2 , 16107 (2016). doi:10.1038/nplants.2016.107;
    pmid: 27398907

  3. J. A. Lau, J. T. Lennon, Evolutionary ecology of plant-microbe
    interactions: Soil microbial structure alters selection on
    plant traits.New Phytol. 192 , 215–224 (2011). doi:10.1111/
    j.1469-8137.2011.03790.x; pmid: 21658184

  4. W. H. van der Puttenet al., Plant-soil feedbacks: The past, the
    present and future challenges.J. Ecol. 101 , 265–276 (2013).
    doi:10.1111/1365-2745.12054

  5. X. Peng, M. A. Bruns, Development of a nitrogen-fixing
    cyanobacterial consortium for surface stabilization of
    agricultural soils.J. Appl. Phycol. 31 , 1047–1056 (2019).
    doi:10.1007/s10811-018-1597-9

  6. J. S. Singh, V. C. Pandey, D. P. Singh, Efficient soil
    microorganisms: A new dimension for sustainable agriculture
    and environmental development.Agric. Ecosyst. Environ. 140 ,
    339 – 353 (2011). doi:10.1016/j.agee.2011.01.017

  7. L. Quiza, M. St-Arnaud, E. Yergeau, Harnessing phytomicrobiome
    signaling for rhizosphere microbiome engineering.Front.
    Plant Sci. 6 , 507 (2015). doi:10.3389/fpls.2015.00507;
    pmid: 26236319

  8. R. Backeret al., Plant growth-promoting rhizobacteria: Context,
    mechanisms of action, and roadmap to commercialization
    of biostimulants for sustainable agriculture.Front. Plant Sci. 9 ,
    1473 (2018). doi:10.3389/fpls.2018.01473; pmid: 30405652

  9. V. C. S. Pankievicz, T. B. Irving, L. G. S. Maia, J. M. Ané,
    Are we there yet? The long walk towards the development of
    efficient symbiotic associations between nitrogen-fixing
    bacteria and non-leguminous crops.BMC Biol. 17 , 99 (2019).
    doi:10.1186/s12915-019-0710-0; pmid: 31796086

  10. F. Stagnari, A. Maggio, A. Galieni, M. Pisante, Multiple
    benefits of legumes for agriculture sustainability:
    An overview.Chem. Biol. Technol. Agric. 4 ,1–13 (2017).
    doi:10.1186/s40538-016-0085-1

  11. C. Franche, K. Lindström, C. Elmerich, Nitrogen-fixing
    bacteria associated with leguminous and non-leguminous
    plants.Plant Soil 321 , 35–59 (2009). doi:10.1007/
    s11104-008-9833-8

  12. M. Charpentier, G. Oldroyd, How close are we to nitrogen-
    fixing cereals?Curr. Opin. Plant Biol. 13 , 556–564 (2010).
    doi:10.1016/j.pbi.2010.08.003; pmid: 20817544

  13. G. E. D. Oldroyd, O. Leyser, A plant’s diet, surviving in a
    variable nutrient environment.Science 368 , eaba0196
    (2020). doi:10.1126/science.aba0196; pmid: 32241923

  14. M. Bueno Batista, R. Dixon, Manipulating nitrogen regulation
    in diazotrophic bacteria for agronomic benefit.Biochem. Soc.
    Trans. 47 , 603–614 (2019). doi:10.1042/BST20180342;
    pmid: 30936245

  15. I. Prietoet al., Species-specific roles of ectomycorrhizal fungi
    in facilitating interplant transfer of hydraulically redistributed
    water between Pinus halepensis saplings and seedlings.
    Plant Soil 406 , 15–27 (2016). doi:10.1007/s11104-016-2860-y

  16. A. Schüßler, D. Schwarzott, C. Walker, A new fungal phylum,
    the Glomeromycota: Phylogeny and evolution.Mycol. Res.
    105 , 1413–1421 (2001). doi:10.1017/S0953756201005196

  17. S. E. Smith, F. A. Smith, I. Jakobsen, Mycorrhizal fungi
    can dominate phosphate supply to plants irrespective of
    growth responses.Plant Physiol. 133 , 16–20 (2003).
    doi:10.1104/pp.103.024380; pmid: 12970469

  18. P. Bonfante, I.-A. Anca, Plants, mycorrhizal fungi, and
    bacteria: A network of interactions.Annu. Rev. Microbiol. 63 ,
    363 – 383 (2009). doi:10.1146/annurev.micro.091208.
    073504 ; pmid: 19514845

  19. J. M. Barea, R. Azcón, C. Azcón-Aguilar, inMicroorganisms in
    Soils: Roles in Genesis and Functions, A. Varma, F. Buscot,
    Eds. (Springer, 2005), pp. 195–212.

  20. M. A. Hassani, P. Durán, S. Hacquard, Microbial interactions
    within the plant holobiont.Microbiome 6 , 58 (2018).
    doi:10.1186/s40168-018-0445-0; pmid: 29587885

  21. J. Zhouet al., Different Arbuscular Mycorrhizal Fungi
    Cocolonizing on a Single Plant Root System Recruit Distinct
    Microbiomes.mSystems 5 , e00929-20 (2020). doi:10.1128/
    mSystems.00929-20; pmid: 33323417

  22. E. T. Kierset al., Reciprocal rewards stabilize cooperation in
    the mycorrhizal symbiosis.Science 333 , 880–882 (2011).
    doi:10.1126/science.1208473; pmid: 21836016
    47. M. Buée, W. de Boer, F. Martin, L. van Overbeek, E. Jurkevitch,
    The rhizosphere zoo: An overview of plant-associated
    communities of microorganisms, including phages, bacteria,
    archaea, and fungi, and of some of their structuring
    factors.Plant Soil 321 , 189–212 (2009). doi:10.1007/
    s11104-009-9991-3
    48. J. J. Parnellet al., From the lab to the farm: An industrial
    perspective of plant beneficial microorganisms.Front. Plant Sci.
    7 , 1110 (2016). doi:10.3389/fpls.2016.01110; pmid: 27540383
    49. J. Köhl, R. Kolnaar, W. J. Ravensberg, Mode of Action of
    Microbial Biological Control Agents Against Plant Diseases:
    Relevance Beyond Efficacy.Front. Plant Sci. 10 , 845 (2019).
    doi:10.3389/fpls.2019.00845; pmid: 31379891
    50. M. R. Griffin, inAdvances in Endophytic Research, V. C. Verma,
    A. C. Gange, Eds. (Springer, 2014), pp. 257–282.
    51. J. A. Vorholt, Microbial life in the phyllosphere.Nat. Rev.
    Microbiol. 10 , 828–840 (2012). doi:10.1038/nrmicro2910;
    pmid: 23154261
    52. J. Imam, P. K. Singh, P. Shukla, Plant microbe interactions in
    post genomic era: Perspectives and applications.Front.
    Microbiol. 7 , 1488 (2016). doi:10.3389/fmicb.2016.01488;
    pmid: 27725809
    53. C. Knief, Analysis of plant microbe interactions in the era of next
    generation sequencing technologies.Front. Plant Sci. 5 , 216
    (2014). doi:10.3389/fpls.2014.00216; pmid: 24904612
    54. R. P. Jacoby, S. Kopriva, Metabolic niches in the rhizosphere
    microbiome: New tools and approaches to analyse
    metabolic mechanisms of plant-microbe nutrient exchange.
    J. Exp. Bot. 70 , 1087–1094 (2019). doi:10.1093/jxb/ery438;
    pmid: 30576534
    55. Y. Baiet al., Functional overlap of the Arabidopsis leaf and
    root microbiota.Nature 528 , 364–369 (2015). doi:10.1038/
    nature16192; pmid: 26633631
    56. S. Pfeilmeieret al., The plant NADPH oxidase RBOHD is
    required for microbiota homeostasis in leaves.Nat. Microbiol.
    6 , 852–864 (2021). doi:10.1038/s41564-021-00929-5;
    pmid: 34194036
    57. A. C. Huanget al., A specialized metabolic network selectively
    modulatesArabidopsisroot microbiota.Science 364 , eaau6389
    (2019). doi:10.1126/science.aau6389; pmid: 31073042
    58. K. Zhalninaet al., Dynamic root exudate chemistry and
    microbial substrate preferences drive patterns in rhizosphere
    microbial community assembly.Nat. Microbiol. 3 , 470– 480
    (2018). doi:10.1038/s41564-018-0129-3; pmid: 29556109
    59. T. H. Mauchlineet al., An analysis of Pseudomonas genomic
    diversity in take-all infected wheat fields reveals the lasting
    impact of wheat cultivars on the soil microbiota.Environ.
    Microbiol. 17 , 4764–4778 (2015). doi:10.1111/1462-
    2920.13038; pmid: 26337499
    60. H. Matsumotoet al., Bacterial seed endophyte shapes
    disease resistance in rice.Nat. Plants 7 , 60–72 (2021).
    doi:10.1038/s41477-020-00826-5; pmid: 33398157
    61. Z. Weiet al., Initial soil microbiome composition and functioning
    predetermine future plant health.Sci. Adv. 5 , eaaw0759
    (2019). doi:10.1126/sciadv.aaw0759; pmid: 31579818
    62. F. T. Maestreet al., Increasing aridity reduces soil microbial
    diversity and abundance in global drylands.Proc. Natl. Acad.
    Sci. U.S.A. 112 , 15684–15689 (2015). doi:10.1073/
    pnas.1516684112; pmid: 26647180
    63. R. L. Barnard, C. A. Osborne, M. K. Firestone, Responses of
    soil bacterial and fungal communities to extreme desiccation
    and rewetting.ISME J. 7 , 2229–2241 (2013). doi:10.1038/
    ismej.2013.104; pmid: 23823489
    64. S. R. Ragusa, D. S. de Zoysa, P. Rengasamy, The effect of
    microorganisms, salinity and turbidity on hydraulic
    conductivity of irrigation channel soil.Irrig. Sci. 15 , 159– 166
    (1994). doi:10.1007/BF00193683
    65. L. Lichneret al., Algae influence the hydrophysical
    parameters of a sandy soil.Catena 108 , 58–68 (2013).
    doi:10.1016/j.catena.2012.02.016
    66. F. T. de Vrieset al., Land use alters the resistance and
    resilience of soil food webs to drought.Nat. Clim. Change 2 ,
    276 – 280 (2012). doi:10.1038/nclimate1368
    67. R. F. Harris, inWater Potential Relations in Soil Microbiology,
    J. Parr, W. Gardner, L. Elliot, Eds. (Soil Science Society of
    America, Madison, WI, 1981), pp. 23–95.
    68. E. Uhlírová, D. Elhottová, J. Tríska, H. Santrůcková,
    Physiology and microbial community structure in soil at
    extreme water content.Folia Microbiol. 50 , 161–166 (2005).
    doi:10.1007/BF02931466; pmid: 16110922
    69. N. Fiereret al., Cross-biome metagenomic analyses of soil
    microbial communities and their functional attributes.
    Proc. Natl. Acad. Sci. U.S.A. 109 , 21390–21395 (2012).
    doi:10.1073/pnas.1215210110; pmid: 23236140


Cobanet al.,Science 375 , eabe0725 (2022) 4 March 2022 8 of 10


RESEARCH | REVIEW

Free download pdf