- A.Šťovíček, M. Kim, D. Or, O. Gillor, Microbial community
response to hydration-desiccation cycles in desert soil.
Sci. Rep. 7 , 45735 (2017). doi:10.1038/srep45735;
pmid: 28383531 - S. Chamizo, Y. Cantón, I. Miralles, F. Domingo, Biological soil
crust development affects physicochemical characteristics
of soil surface in semiarid ecosystems.Soil Biol. Biochem. 49 ,
96 – 105 (2012). doi:10.1016/j.soilbio.2012.02.017 - D. M. Griffin, Water and Microbial Stress.Adv. Microb. Ecol. 5 ,
91 – 136 (1981). doi:10.1007/978-1-4615-8306-6_3 - M. Hernándezet al., Structure, function and resilience to
desiccation of methanogenic microbial communities in
temporarily inundated soils of the Amazon rainforest (Cunia
Reserve, Rondonia).Environ. Microbiol. 21 , 1702–1717 (2019).
doi:10.1111/1462-2920.14535; pmid: 30680883 - A. Reimet al., Response of Methanogenic Microbial
Communities to Desiccation Stress in Flooded and Rain-Fed
Paddy Soil from Thailand.Front. Microbiol. 8 , 785 (2017).
doi:10.3389/fmicb.2017.00785; pmid: 28529503 - F. U. Battistuzzi, S. B. Hedges, A major clade of prokaryotes
with ancient adaptations to life on land.Mol. Biol. Evol. 26 ,
335 – 343 (2009). doi:10.1093/molbev/msn247;
pmid: 18988685 - W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh,
P. Setlow, Resistance of Bacillus endospores to extreme
terrestrial and extraterrestrial environments.Microbiol. Mol.
Biol. Rev. 64 , 548–572 (2000). doi:10.1128/MMBR.64.3.548-
572.2000; pmid: 10974126 - R. T. Joneset al., A comprehensive survey of soil acidobacterial
diversity using pyrosequencing and clone library analyses.
ISME J. 3 , 442–453 (2009). doi:10.1038/ismej.2008.127;
pmid: 19129864 - S. J. Blazewicz, R. L. Barnard, R. A. Daly, M. K. Firestone,
Evaluating rRNA as an indicator of microbial activity in
environmental communities: Limitations and uses.ISME J. 7 ,
2061 – 2068 (2013). doi:10.1038/ismej.2013.102;
\pmid: 23823491 - G. E. Schaumannet al., Influence of biofilms on the water
repellency of urban soil samples.Hydrol. Processes 21 ,
2276 – 2284 (2007). doi:10.1002/hyp.6746 - M. M. Roper, The isolation and characterisation of bacteria
with the potential to degrade waxes that cause water
repellency in sandy soils.Soil Res. 42 , 427–434 (2004).
doi:10.1071/SR03153 - F. McKenna, K. A. El-Tarabily, S. Petrie, C. Chen, B. Dell,
Application of actinomycetes to soil to ameliorate water
repellency.Lett. Appl. Microbiol. 35 , 107–112 (2002).
doi:10.1046/j.1472-765X.2002.01136.x; pmid: 12100583 - A. Worrichet al., Mycelium-mediated transfer of water and
nutrients stimulates bacterial activity in dry and oligotrophic
environments.Nat. Commun. 8 , 15472 (2017). doi:10.1038/
ncomms15472; pmid: 28589950 - L. Montanarella, inClimate and Land Degradation,M.V.K.Sivakumar,
N. Ndiang’ui, Eds. (Springer, 2007), pp. 83–104. - A. Cook, K. Ljung, R. Watkins, inEncyclopedia of Environmental
Health(Elsevier, 2019), pp. 546–553. - UN Decade for Deserts and the Fight against Desertification,
“Why Now?”(2010);www.un.org/en/events/desertification_
decade/whynow.shtml. - P. Reich, S. Numbem, R. Almaraz, H. Eswaran, Land resource
stresses and desertification in Africa.Agro Sci. 2 , (2004).
doi:10.4314/as.v2i2.1484 - A. S. Ayangbenro, O. O. Babalola, Reclamation of arid and
semi-arid soils: The role of plant growth-promoting archaea
and bacteria.Curr. Plant Biol. 25 , 100173 (2021).
doi:10.1016/j.cpb.2020.100173 - D. Daffonchio, H. Hirt, G. Berg, inPrinciples of Plant-Microbe
Interactions: Microbes for Sustainable Agriculture,
B. Lugtenberg, Ed. (Springer, 2015), pp. 265–276. - W. Alsharif, M. M. Saad, H. Hirt, Desert Microbes for Boosting
Sustainable Agriculture in Extreme Environments.Front.
Microbiol. 11 , 1666 (2020). doi:10.3389/fmicb.2020.01666;
pmid: 32793155 - C. Chenet al., Pantoea alhagi, a novel endophytic bacterium
with ability to improve growth and drought tolerance in
wheat.Sci. Rep. 7 , 41564 (2017). doi:10.1038/srep41564;
pmid: 28128318 - J. I. Vílchez, C. García-Fontana, D. Román-Naranjo,
J. González-López, M. Manzanera, Plant Drought Tolerance
Enhancement by Trehalose Production of Desiccation-
Tolerant Microorganisms.Front. Microbiol. 7 , 1577 (2016).
doi:10.3389/fmicb.2016.01577; pmid: 27746776 - L. P. Chiquoine, S. R. Abella, M. A. Bowker, Rapidly restoring
biological soil crusts and ecosystem functions in a severely
disturbed desert ecosystem.Ecol. Appl. 26 , 1260– 1272
(2016). doi:10.1002/15-0973; pmid: 27509763
- M. Alcañiz, L. Outeiro, M. Francos, X. Úbeda, Effects of
prescribed fires on soil properties: A review.Sci. Total
Environ. 613 – 614 , 944–957 (2018). doi:10.1016/
j.scitotenv.2017.09.144; pmid: 28946382 - G. Certini, Effects of fire on properties of forest soils:
A review.Oecologia 143 ,1–10 (2005). doi:10.1007/s00442-
004-1788-8; pmid: 15688212 - S. H. Doerr, A. Cerdá, Fire effects on soil system functioning:
New insights and future challenges.Int. J. Wildland Fire 14 ,
339 (2005). doi:10.1071/WF05094 - L. F. DeBano, The role of fire and soil heating on water repellency
in wildland environments: A review.J. Hydrol. 231 – 232 , 195– 206
(2000). doi:10.1016/S0022-1694(00)00194-3 - S. Ravi, P. D’Odorico, T. M. Zobeck, T. M. Over, The effect
of fire-induced soil hydrophobicity on wind erosion in a
semiarid grassland: Experimental observations and
theoretical framework.Geomorphology 105 , 80–86 (2009).
doi:10.1016/j.geomorph.2007.12.010 - E. J. Kim, J. E. Oh, Y. S. Chang, Effects of forest fire on
the level and distribution of PCDD/Fs and PAHs in soil.
Sci. Total Environ. 311 , 177–189 (2003). doi:10.1016/S0048-
9697(03)00095-0; pmid: 12826391 - A. M. Aguirre-Monroy, J. C. Santana-Martínez, J. Dussán,
Lysinibacillus sphaericus as a nutrient enhancer during
fire-impacted soil replantation.Appl. Environ. Soil Sci. 2019 ,
1 – 8 (2019). doi:10.1155/2019/3075153 - P. Radhapriya, A. Ramachandran, P. Palani, Indigenous plant
growth-promoting bacteria enhance plant growth, biomass,
and nutrient uptake in degraded forest plants.3 Biotech. 8 ,
154 (2018). doi:10.1007/s13205-018-1179-1 - N. R. Sousa, A. R. Franco, M. A. Ramos, R. S. Oliveira,
P. M. L. Castro, Reforestation of burned stands: The effect of
ectomycorrhizal fungi on Pinus pinaster establishment.
Soil Biol. Biochem. 43 , 2115–2120 (2011). doi:10.1016/
j.soilbio.2011.06.013 - I. G. Sales da Silvaet al., Soil Bioremediation: Overview of
Technologies and Trends.Energies 13 , 4664 (2020).
doi:10.3390/en13184664 - M. Andreolli, S. Lampis, P. Brignoli, G. Vallini, Bioaugmentation
and biostimulation as strategies for the bioremediation of a
burned woodland soil contaminated by toxic hydrocarbons:
A comparative study.J. Environ. Manage. 153 , 121–131 (2015).
doi:10.1016/j.jenvman.2015.02.007; pmid: 25688477 - N. Haleyuret al., Influence of bioaugmentation and
biostimulation on PAH degradation in aged contaminated
soils: Response and dynamics of the bacterial community.
J. Environ. Manage. 238 , 49–58 (2019). doi:10.1016/
j.jenvman.2019.02.115; pmid: 30844545 - M. Roper, Potential for remediation of water repellent soils by
inoculation with wax-degrading bacteria in south-western
Australia.Biologia 61 , S358–S362 (2007). doi:10.2478/
s11756-006-0189-3 - M. M. Roper, Managing soils to enhance the potential for
bioremediation of water repellency.Soil Res. 43 , 803 (2005).
doi:10.1071/SR05061 - H. C. J. Godfrayet al., Food security: The challenge of feeding
9 billion people.Science 327 , 812–818 (2010). doi:10.1126/
science.1185383; pmid: 20110467 - R. Kraaijvanger, T. Veldkamp, Grain Productivity, Fertilizer
Response and Nutrient Balance of Farming Systems in
Tigray, Ethiopia: A Multi‐Perspective View in Relation to Soil
Fertility Degradation.Land Degrad. Dev. 26 , 701–710 (2015).
doi:10.1002/ldr.2330 - V. S. Bharti, M. L. Dotaniya, S. P. Shukla, V. K. Yadav,
inAgro-Environmental Sustainability, Volume 1: Managing
Crop Health, J. S. Singh, G. Seneviratne, Eds. (Springer,
2017), pp. 81–111. - M. I. Rashidet al., Bacteria and fungi can contribute to
nutrients bioavailability and aggregate formation in degraded
soils.Microbiol. Res. 183 , 26–41 (2016). doi:10.1016/
j.micres.2015.11.007; pmid: 26805616 - H. Etesami, G. A. Beattie, Mining halophytes for plant growth-
promoting halotolerant bacteria to enhance the salinity
tolerance of non-halophytic crops.Front. Microbiol. 9 , 148
(2018). doi:10.3389/fmicb.2018.00148; pmid: 29472908 - R. Munns, M. Tester, Mechanisms of salinity tolerance.
Annu. Rev. Plant Biol. 59 , 651–681 (2008). doi:10.1146/
annurev.arplant.59.032607.092911; pmid: 18444910 - H. Bothe, Arbuscular mycorrhiza and salt tolerance of plants.
Symbiosis 58 ,7–16 (2012). doi:10.1007/s13199-012-0196-9 - N. Kumar Aroraet al., Halo-tolerant plant growth promoting
rhizobacteria for improving productivity and remediation of
saline soils.J. Adv. Res. 26 , 69–82 (2020). doi:10.1016/
j.jare.2020.07.003; pmid: 33133684
- M. Chandrasekaran, S. Boughattas, S. Hu, S. H. Oh, T. Sa,
A meta-analysis of arbuscular mycorrhizal effects on plants
grown under salt stress.Mycorrhiza 24 , 611–625 (2014).
doi:10.1007/s00572-014-0582-7; pmid: 24770494 - S. Arora, M. Vanza, inBioremediation of Salt Affected Soils:
An Indian Perspective, S. Arora, A. K. Singh, Y. P. Singh, Eds.
(Springer, 2017), pp. 87–100. - S. Ullah, A. Bano, Isolation of plant-growth-promoting
rhizobacteria from rhizospheric soil of halophytes and their
impact on maize (Zea mays L.) under induced soil salinity.
Can. J. Microbiol. 61 , 307–313 (2015). doi:10.1139/cjm-2014-
0668 ; pmid: 25776270 - I. Pinedo, T. Ledger, M. Greve, M. J. Poupin, Burkholderia
phytofirmans PsJN induces long-term metabolic and
transcriptional changes involved in Arabidopsis thaliana salt
tolerance.Front. Plant Sci. 6 , 466 (2015). doi:10.3389/
fpls.2015.00466; pmid: 26157451 - H. Yasminet al., Halotolerant rhizobacteria Pseudomonas
pseudoalcaligenes and Bacillus subtilis mediate systemic
tolerance in hydroponically grown soybean (Glycine max L.)
against salinity stress.PLOS ONE 15 , e0231348 (2020).
doi:10.1371/journal.pone.0231348; pmid: 32298338 - P. A. Rodriguezet al., Systems Biology of Plant-Microbiome
Interactions.Mol. Plant 12 , 804–821 (2019). doi:10.1016/
j.molp.2019.05.006; pmid: 31128275 - V. Tripathi, P. Kumar, P. Tripathi, A. Kishore, M. Kamle, Eds.,
Microbial Genomics in Sustainable Agroecosystems, Volume 2
(Springer, 2019). doi:10.1007/978-981-32-9860-6 - R. Porcel, R. Aroca, J. M. Ruiz-Lozano, Salinity stress alleviation
using arbuscular mycorrhizal fungi. A review.Agron. Sustain.
Dev. 32 , 181–200 (2012). doi:10.1007/s13593-011-0029-x - M. C. Hernandez-Soriano, Ed.,Environmental Risk Assessment
of Soil Contamination(InTech, 2014). - D. Hou, Y. S. Ok, Soil pollution - speed up global mapping.
Nature 566 , 455 (2019). doi:10.1038/d41586-019-00669-x;
pmid: 30809065 - Food and Agriculture Organization of the United Nations,
“Report sounds alarm on soil pollutionW(2018);www.fao.org/
news/story/en/item/1126971/icode/. - P. Singhet al., inAbatement of Environmental Pollutants:
Trends and Strategies, P. Singh, A. Kumar, A. Borthakur, Eds.
(Elsevier, 2019), pp. 1–23. - J. L. Wood, W. Liu, C. Tang, A. E. Franks, Microorganisms in
heavy metal bioremediation: Strategies for applying
microbial-community engineering to remediate soils.AIMS
Bioeng. 3 , 211–229 (2016). doi:10.3934/bioeng.2016.2.211 - A. A. Juwarkar, Microbe-Assisted Phytoremediation for
Restoration of Biodiversity of Degraded Lands: A Sustainable
Solution.Proc. Natl. Acad. Sci. India B 82 , 313–318 (2012).
doi:10.1007/s40011-012-0098-x - O. Akhtar, R. Mishra, H. K. Kehri, Arbuscular Mycorrhizal
Association Contributes to Cr Accumulation and Tolerance in
Plants Growing on Cr Contaminated Soils.Proc. Natl.
Acad. Sci. India B 89 , 63–70 (2017). doi:10.1007/s40011-
017-0914-4 - O. Akhtar, H. K. Kehri, I. Zoomi, Arbuscular mycorrhiza and
Aspergillus terreus inoculation along with compost
amendment enhance the phytoremediation of Cr-rich
technosol by Solanum lycopersicum under field conditions.
Ecotoxicol. Environ. Saf. 201 , 110869 (2020). doi:10.1016/
j.ecoenv.2020.110869; pmid: 32585490 - M. Gil-Martínezet al., Soil fungal diversity and functionality
are driven by plant species used in phytoremediation.
Soil Biol. Biochem. 153 , 108102 (2021). doi:10.1016/
j.soilbio.2020.108102 - M. Figueroaet al., Synthesis and Antibacterial Activity of
Metal(loid) Nanostructures by Environmental Multi-Metal
(loid) Resistant Bacteria and Metal(loid)-Reducing
Flavoproteins.Front. Microbiol. 9 , 959 (2018). doi:10.3389/
fmicb.2018.00959; pmid: 29869640 - C. R. Marques, Extremophilic microfactories: Applications
in metal and radionuclide bioremediation.Front. Microbiol.
9 , 1191 (2018). doi:10.3389/fmicb.2018.01191;
pmid: 29910794 - S. M. Techtmann, T. C. Hazen, Metagenomic applications in
environmental monitoring and bioremediation.J. Ind.
Microbiol. Biotechnol. 43 , 1345–1354 (2016). doi:10.1007/
s10295-016-1809-8; pmid: 27558781 - C. Liang, W. Amelung, J. Lehmann, M. Kästner, Quantitative
assessment of microbial necromass contribution to soil
organic matter.Global Change Biol. 25 , 3578–3590 (2019).
doi:10.1111/gcb.14781; pmid: 31365780
Cobanet al.,Science 375 , eabe0725 (2022) 4 March 2022 9 of 10
RESEARCH | REVIEW