Science - USA (2022-03-04)

(Maropa) #1

  1. A.Šťovíček, M. Kim, D. Or, O. Gillor, Microbial community
    response to hydration-desiccation cycles in desert soil.
    Sci. Rep. 7 , 45735 (2017). doi:10.1038/srep45735;
    pmid: 28383531

  2. S. Chamizo, Y. Cantón, I. Miralles, F. Domingo, Biological soil
    crust development affects physicochemical characteristics
    of soil surface in semiarid ecosystems.Soil Biol. Biochem. 49 ,
    96 – 105 (2012). doi:10.1016/j.soilbio.2012.02.017

  3. D. M. Griffin, Water and Microbial Stress.Adv. Microb. Ecol. 5 ,
    91 – 136 (1981). doi:10.1007/978-1-4615-8306-6_3

  4. M. Hernándezet al., Structure, function and resilience to
    desiccation of methanogenic microbial communities in
    temporarily inundated soils of the Amazon rainforest (Cunia
    Reserve, Rondonia).Environ. Microbiol. 21 , 1702–1717 (2019).
    doi:10.1111/1462-2920.14535; pmid: 30680883

  5. A. Reimet al., Response of Methanogenic Microbial
    Communities to Desiccation Stress in Flooded and Rain-Fed
    Paddy Soil from Thailand.Front. Microbiol. 8 , 785 (2017).
    doi:10.3389/fmicb.2017.00785; pmid: 28529503

  6. F. U. Battistuzzi, S. B. Hedges, A major clade of prokaryotes
    with ancient adaptations to life on land.Mol. Biol. Evol. 26 ,
    335 – 343 (2009). doi:10.1093/molbev/msn247;
    pmid: 18988685

  7. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh,
    P. Setlow, Resistance of Bacillus endospores to extreme
    terrestrial and extraterrestrial environments.Microbiol. Mol.
    Biol. Rev. 64 , 548–572 (2000). doi:10.1128/MMBR.64.3.548-
    572.2000; pmid: 10974126

  8. R. T. Joneset al., A comprehensive survey of soil acidobacterial
    diversity using pyrosequencing and clone library analyses.
    ISME J. 3 , 442–453 (2009). doi:10.1038/ismej.2008.127;
    pmid: 19129864

  9. S. J. Blazewicz, R. L. Barnard, R. A. Daly, M. K. Firestone,
    Evaluating rRNA as an indicator of microbial activity in
    environmental communities: Limitations and uses.ISME J. 7 ,
    2061 – 2068 (2013). doi:10.1038/ismej.2013.102;
    \pmid: 23823491

  10. G. E. Schaumannet al., Influence of biofilms on the water
    repellency of urban soil samples.Hydrol. Processes 21 ,
    2276 – 2284 (2007). doi:10.1002/hyp.6746

  11. M. M. Roper, The isolation and characterisation of bacteria
    with the potential to degrade waxes that cause water
    repellency in sandy soils.Soil Res. 42 , 427–434 (2004).
    doi:10.1071/SR03153

  12. F. McKenna, K. A. El-Tarabily, S. Petrie, C. Chen, B. Dell,
    Application of actinomycetes to soil to ameliorate water
    repellency.Lett. Appl. Microbiol. 35 , 107–112 (2002).
    doi:10.1046/j.1472-765X.2002.01136.x; pmid: 12100583

  13. A. Worrichet al., Mycelium-mediated transfer of water and
    nutrients stimulates bacterial activity in dry and oligotrophic
    environments.Nat. Commun. 8 , 15472 (2017). doi:10.1038/
    ncomms15472; pmid: 28589950

  14. L. Montanarella, inClimate and Land Degradation,M.V.K.Sivakumar,
    N. Ndiang’ui, Eds. (Springer, 2007), pp. 83–104.

  15. A. Cook, K. Ljung, R. Watkins, inEncyclopedia of Environmental
    Health(Elsevier, 2019), pp. 546–553.

  16. UN Decade for Deserts and the Fight against Desertification,
    “Why Now?”(2010);www.un.org/en/events/desertification_
    decade/whynow.shtml.

  17. P. Reich, S. Numbem, R. Almaraz, H. Eswaran, Land resource
    stresses and desertification in Africa.Agro Sci. 2 , (2004).
    doi:10.4314/as.v2i2.1484

  18. A. S. Ayangbenro, O. O. Babalola, Reclamation of arid and
    semi-arid soils: The role of plant growth-promoting archaea
    and bacteria.Curr. Plant Biol. 25 , 100173 (2021).
    doi:10.1016/j.cpb.2020.100173

  19. D. Daffonchio, H. Hirt, G. Berg, inPrinciples of Plant-Microbe
    Interactions: Microbes for Sustainable Agriculture,
    B. Lugtenberg, Ed. (Springer, 2015), pp. 265–276.

  20. W. Alsharif, M. M. Saad, H. Hirt, Desert Microbes for Boosting
    Sustainable Agriculture in Extreme Environments.Front.
    Microbiol. 11 , 1666 (2020). doi:10.3389/fmicb.2020.01666;
    pmid: 32793155

  21. C. Chenet al., Pantoea alhagi, a novel endophytic bacterium
    with ability to improve growth and drought tolerance in
    wheat.Sci. Rep. 7 , 41564 (2017). doi:10.1038/srep41564;
    pmid: 28128318

  22. J. I. Vílchez, C. García-Fontana, D. Román-Naranjo,
    J. González-López, M. Manzanera, Plant Drought Tolerance
    Enhancement by Trehalose Production of Desiccation-
    Tolerant Microorganisms.Front. Microbiol. 7 , 1577 (2016).
    doi:10.3389/fmicb.2016.01577; pmid: 27746776

  23. L. P. Chiquoine, S. R. Abella, M. A. Bowker, Rapidly restoring
    biological soil crusts and ecosystem functions in a severely


disturbed desert ecosystem.Ecol. Appl. 26 , 1260– 1272
(2016). doi:10.1002/15-0973; pmid: 27509763


  1. M. Alcañiz, L. Outeiro, M. Francos, X. Úbeda, Effects of
    prescribed fires on soil properties: A review.Sci. Total
    Environ. 613 – 614 , 944–957 (2018). doi:10.1016/
    j.scitotenv.2017.09.144; pmid: 28946382

  2. G. Certini, Effects of fire on properties of forest soils:
    A review.Oecologia 143 ,1–10 (2005). doi:10.1007/s00442-
    004-1788-8; pmid: 15688212

  3. S. H. Doerr, A. Cerdá, Fire effects on soil system functioning:
    New insights and future challenges.Int. J. Wildland Fire 14 ,
    339 (2005). doi:10.1071/WF05094

  4. L. F. DeBano, The role of fire and soil heating on water repellency
    in wildland environments: A review.J. Hydrol. 231 – 232 , 195– 206
    (2000). doi:10.1016/S0022-1694(00)00194-3

  5. S. Ravi, P. D’Odorico, T. M. Zobeck, T. M. Over, The effect
    of fire-induced soil hydrophobicity on wind erosion in a
    semiarid grassland: Experimental observations and
    theoretical framework.Geomorphology 105 , 80–86 (2009).
    doi:10.1016/j.geomorph.2007.12.010

  6. E. J. Kim, J. E. Oh, Y. S. Chang, Effects of forest fire on
    the level and distribution of PCDD/Fs and PAHs in soil.
    Sci. Total Environ. 311 , 177–189 (2003). doi:10.1016/S0048-
    9697(03)00095-0; pmid: 12826391

  7. A. M. Aguirre-Monroy, J. C. Santana-Martínez, J. Dussán,
    Lysinibacillus sphaericus as a nutrient enhancer during
    fire-impacted soil replantation.Appl. Environ. Soil Sci. 2019 ,
    1 – 8 (2019). doi:10.1155/2019/3075153

  8. P. Radhapriya, A. Ramachandran, P. Palani, Indigenous plant
    growth-promoting bacteria enhance plant growth, biomass,
    and nutrient uptake in degraded forest plants.3 Biotech. 8 ,
    154 (2018). doi:10.1007/s13205-018-1179-1

  9. N. R. Sousa, A. R. Franco, M. A. Ramos, R. S. Oliveira,
    P. M. L. Castro, Reforestation of burned stands: The effect of
    ectomycorrhizal fungi on Pinus pinaster establishment.
    Soil Biol. Biochem. 43 , 2115–2120 (2011). doi:10.1016/
    j.soilbio.2011.06.013

  10. I. G. Sales da Silvaet al., Soil Bioremediation: Overview of
    Technologies and Trends.Energies 13 , 4664 (2020).
    doi:10.3390/en13184664

  11. M. Andreolli, S. Lampis, P. Brignoli, G. Vallini, Bioaugmentation
    and biostimulation as strategies for the bioremediation of a
    burned woodland soil contaminated by toxic hydrocarbons:
    A comparative study.J. Environ. Manage. 153 , 121–131 (2015).
    doi:10.1016/j.jenvman.2015.02.007; pmid: 25688477

  12. N. Haleyuret al., Influence of bioaugmentation and
    biostimulation on PAH degradation in aged contaminated
    soils: Response and dynamics of the bacterial community.
    J. Environ. Manage. 238 , 49–58 (2019). doi:10.1016/
    j.jenvman.2019.02.115; pmid: 30844545

  13. M. Roper, Potential for remediation of water repellent soils by
    inoculation with wax-degrading bacteria in south-western
    Australia.Biologia 61 , S358–S362 (2007). doi:10.2478/
    s11756-006-0189-3

  14. M. M. Roper, Managing soils to enhance the potential for
    bioremediation of water repellency.Soil Res. 43 , 803 (2005).
    doi:10.1071/SR05061

  15. H. C. J. Godfrayet al., Food security: The challenge of feeding
    9 billion people.Science 327 , 812–818 (2010). doi:10.1126/
    science.1185383; pmid: 20110467

  16. R. Kraaijvanger, T. Veldkamp, Grain Productivity, Fertilizer
    Response and Nutrient Balance of Farming Systems in
    Tigray, Ethiopia: A Multi‐Perspective View in Relation to Soil
    Fertility Degradation.Land Degrad. Dev. 26 , 701–710 (2015).
    doi:10.1002/ldr.2330

  17. V. S. Bharti, M. L. Dotaniya, S. P. Shukla, V. K. Yadav,
    inAgro-Environmental Sustainability, Volume 1: Managing
    Crop Health, J. S. Singh, G. Seneviratne, Eds. (Springer,
    2017), pp. 81–111.

  18. M. I. Rashidet al., Bacteria and fungi can contribute to
    nutrients bioavailability and aggregate formation in degraded
    soils.Microbiol. Res. 183 , 26–41 (2016). doi:10.1016/
    j.micres.2015.11.007; pmid: 26805616

  19. H. Etesami, G. A. Beattie, Mining halophytes for plant growth-
    promoting halotolerant bacteria to enhance the salinity
    tolerance of non-halophytic crops.Front. Microbiol. 9 , 148
    (2018). doi:10.3389/fmicb.2018.00148; pmid: 29472908

  20. R. Munns, M. Tester, Mechanisms of salinity tolerance.
    Annu. Rev. Plant Biol. 59 , 651–681 (2008). doi:10.1146/
    annurev.arplant.59.032607.092911; pmid: 18444910

  21. H. Bothe, Arbuscular mycorrhiza and salt tolerance of plants.
    Symbiosis 58 ,7–16 (2012). doi:10.1007/s13199-012-0196-9

  22. N. Kumar Aroraet al., Halo-tolerant plant growth promoting
    rhizobacteria for improving productivity and remediation of


saline soils.J. Adv. Res. 26 , 69–82 (2020). doi:10.1016/
j.jare.2020.07.003; pmid: 33133684


  1. M. Chandrasekaran, S. Boughattas, S. Hu, S. H. Oh, T. Sa,
    A meta-analysis of arbuscular mycorrhizal effects on plants
    grown under salt stress.Mycorrhiza 24 , 611–625 (2014).
    doi:10.1007/s00572-014-0582-7; pmid: 24770494

  2. S. Arora, M. Vanza, inBioremediation of Salt Affected Soils:
    An Indian Perspective, S. Arora, A. K. Singh, Y. P. Singh, Eds.
    (Springer, 2017), pp. 87–100.

  3. S. Ullah, A. Bano, Isolation of plant-growth-promoting
    rhizobacteria from rhizospheric soil of halophytes and their
    impact on maize (Zea mays L.) under induced soil salinity.
    Can. J. Microbiol. 61 , 307–313 (2015). doi:10.1139/cjm-2014-
    0668 ; pmid: 25776270

  4. I. Pinedo, T. Ledger, M. Greve, M. J. Poupin, Burkholderia
    phytofirmans PsJN induces long-term metabolic and
    transcriptional changes involved in Arabidopsis thaliana salt
    tolerance.Front. Plant Sci. 6 , 466 (2015). doi:10.3389/
    fpls.2015.00466; pmid: 26157451

  5. H. Yasminet al., Halotolerant rhizobacteria Pseudomonas
    pseudoalcaligenes and Bacillus subtilis mediate systemic
    tolerance in hydroponically grown soybean (Glycine max L.)
    against salinity stress.PLOS ONE 15 , e0231348 (2020).
    doi:10.1371/journal.pone.0231348; pmid: 32298338

  6. P. A. Rodriguezet al., Systems Biology of Plant-Microbiome
    Interactions.Mol. Plant 12 , 804–821 (2019). doi:10.1016/
    j.molp.2019.05.006; pmid: 31128275

  7. V. Tripathi, P. Kumar, P. Tripathi, A. Kishore, M. Kamle, Eds.,
    Microbial Genomics in Sustainable Agroecosystems, Volume 2
    (Springer, 2019). doi:10.1007/978-981-32-9860-6

  8. R. Porcel, R. Aroca, J. M. Ruiz-Lozano, Salinity stress alleviation
    using arbuscular mycorrhizal fungi. A review.Agron. Sustain.
    Dev. 32 , 181–200 (2012). doi:10.1007/s13593-011-0029-x

  9. M. C. Hernandez-Soriano, Ed.,Environmental Risk Assessment
    of Soil Contamination(InTech, 2014).

  10. D. Hou, Y. S. Ok, Soil pollution - speed up global mapping.
    Nature 566 , 455 (2019). doi:10.1038/d41586-019-00669-x;
    pmid: 30809065

  11. Food and Agriculture Organization of the United Nations,
    “Report sounds alarm on soil pollutionW(2018);www.fao.org/
    news/story/en/item/1126971/icode/.

  12. P. Singhet al., inAbatement of Environmental Pollutants:
    Trends and Strategies, P. Singh, A. Kumar, A. Borthakur, Eds.
    (Elsevier, 2019), pp. 1–23.

  13. J. L. Wood, W. Liu, C. Tang, A. E. Franks, Microorganisms in
    heavy metal bioremediation: Strategies for applying
    microbial-community engineering to remediate soils.AIMS
    Bioeng. 3 , 211–229 (2016). doi:10.3934/bioeng.2016.2.211

  14. A. A. Juwarkar, Microbe-Assisted Phytoremediation for
    Restoration of Biodiversity of Degraded Lands: A Sustainable
    Solution.Proc. Natl. Acad. Sci. India B 82 , 313–318 (2012).
    doi:10.1007/s40011-012-0098-x

  15. O. Akhtar, R. Mishra, H. K. Kehri, Arbuscular Mycorrhizal
    Association Contributes to Cr Accumulation and Tolerance in
    Plants Growing on Cr Contaminated Soils.Proc. Natl.
    Acad. Sci. India B 89 , 63–70 (2017). doi:10.1007/s40011-
    017-0914-4

  16. O. Akhtar, H. K. Kehri, I. Zoomi, Arbuscular mycorrhiza and
    Aspergillus terreus inoculation along with compost
    amendment enhance the phytoremediation of Cr-rich
    technosol by Solanum lycopersicum under field conditions.
    Ecotoxicol. Environ. Saf. 201 , 110869 (2020). doi:10.1016/
    j.ecoenv.2020.110869; pmid: 32585490

  17. M. Gil-Martínezet al., Soil fungal diversity and functionality
    are driven by plant species used in phytoremediation.
    Soil Biol. Biochem. 153 , 108102 (2021). doi:10.1016/
    j.soilbio.2020.108102

  18. M. Figueroaet al., Synthesis and Antibacterial Activity of
    Metal(loid) Nanostructures by Environmental Multi-Metal
    (loid) Resistant Bacteria and Metal(loid)-Reducing
    Flavoproteins.Front. Microbiol. 9 , 959 (2018). doi:10.3389/
    fmicb.2018.00959; pmid: 29869640

  19. C. R. Marques, Extremophilic microfactories: Applications
    in metal and radionuclide bioremediation.Front. Microbiol.
    9 , 1191 (2018). doi:10.3389/fmicb.2018.01191;
    pmid: 29910794

  20. S. M. Techtmann, T. C. Hazen, Metagenomic applications in
    environmental monitoring and bioremediation.J. Ind.
    Microbiol. Biotechnol. 43 , 1345–1354 (2016). doi:10.1007/
    s10295-016-1809-8; pmid: 27558781

  21. C. Liang, W. Amelung, J. Lehmann, M. Kästner, Quantitative
    assessment of microbial necromass contribution to soil
    organic matter.Global Change Biol. 25 , 3578–3590 (2019).
    doi:10.1111/gcb.14781; pmid: 31365780


Cobanet al.,Science 375 , eabe0725 (2022) 4 March 2022 9 of 10


RESEARCH | REVIEW

Free download pdf