- C. M. Kallenbach, S. D. Frey, A. S. Grandy, Direct evidence for
microbial-derived soil organic matter formation and its
ecophysiological controls.Nat. Commun. 7 , 13630 (2016).
doi:10.1038/ncomms13630; pmid: 27892466 - J. Six, H. Bossuyt, S. Degryze, K. Denef, A history of research
on the link between (micro)aggregates, soil biota, and soil
organic matter dynamics.Soil Tillage Res. 79 ,7–31 (2004).
doi:10.1016/j.still.2004.03.008 - M. C. Rillig, Arbuscular mycorrhizae, glomalin, and soil
aggregation.Can. J. Soil Sci. 84 , 355–363 (2004).
doi:10.4141/S04-003 - N. Requena, E. Perez-Solis, C. Azcón-Aguilar, P. Jeffries,
J.-M. Barea, Management of indigenous plant-microbe
symbioses aids restoration of desertified ecosystems.
Appl. Environ. Microbiol. 67 , 495–498 (2001). doi:10.1128/
AEM.67.2.495-498.2001; pmid: 11157208 - A. Medina, R. Azcón, Effectiveness of the application of
arbuscular mycorrhiza fungi and organic amendments to
improve soil quality and plant performance under stress
conditions.J. Soil Sci. Plant Nutr. 10 , 354–372 (2010).
doi:10.4067/S0718-95162010000100009 - K. K. Jefferson, What drives bacteria to produce a biofilm?
FEMS Microbiol. Lett. 236 , 163–173 (2004). doi:10.1111/
j.1574-6968.2004.tb09643.x; pmid: 15251193 - M. L. Dennis, J. P. Turner, Hydraulic Conductivity of
Compacted Soil Treated with Biofilm.J. Geotech. Geoenviron.
Eng. 124 , 120–127 (1998). doi:10.1061/(ASCE)1090-0241
(1998)124:2(120) - V. Ivanov, J. Chu, Applications of microorganisms to
geotechnical engineering for bioclogging and biocementation
of soil in situ.Rev. Environ. Sci. Biotechnol. 7 , 139– 153
(2008). doi:10.1007/s11157-007-9126-3 - C. Chenu, Clay- or sand-polysaccharide associations as
models for the interface between micro-organisms and soil:
Water related properties and microstructure.Geoderma 56 ,
143 – 156 (1993). doi:10.1016/0016-7061(93)90106-U - E. B. Roberson, M. K. Firestone, Relationship between
desiccation and exopolysaccharide production in a soil
Pseudomonas sp.Appl. Environ. Microbiol. 58 , 1284– 1291
(1992). doi:10.1128/aem.58.4.1284-1291.1992;
pmid: 16348695 - D. Or, S. Phutane, A. Dechesne, Extracellular Polymeric
Substances Affecting Pore‐Scale Hydrologic Conditions for
Bacterial Activity in Unsaturated Soils.Vadose Zone J. 6 ,
298 – 305 (2007). doi:10.2136/vzj2006.0080 - L. J. Henao, K. Mazeau, Molecular modelling studies of clay-
exopolysaccharide complexes: Soil aggregation and water
retention phenomena.Mater. Sci. Eng. C 29 , 2326– 2332
(2009). doi:10.1016/j.msec.2009.06.001 - W. S. Changet al., Alginate production by Pseudomonas
putida creates a hydrated microenvironment and contributes
to biofilm architecture and stress tolerance under water-
limiting conditions.J. Bacteriol. 189 , 8290–8299 (2007).
doi:10.1128/JB.00727-07 - Y. S. Guoet al., Bacterial extracellular polymeric substances
amplify water content variability at the pore scale.Front.
Environ. Sci. 6 , 93 (2018). doi:10.3389/fenvs.2018.00093 - D. Or, B. F. Smets, J. M. Wraith, A. Dechesne, S. P. Friedman,
Physical constraints affecting bacterial habitats and activity
in unsaturated porous media - a review.Adv. Water Resour. 30 ,
1505 – 1527 (2007). doi:10.1016/j.advwatres.2006.05.025 - B. C. Cruzet al., Pore-scale water dynamics during drying
and the impacts of structure and surface wettability.
Water Resour. Res. 53 , 5585–5600 (2017). doi:10.1002/
2016WR019862 - D. B. Georgeet al., The effects of microbiotic soil crusts on
soil water loss.Arid Land Res. Manage. 17 , 113–125 (2003).
doi:10.1080/15324980301588 - S. D. Woodcocket al., Trehalose anda-glucan mediate
distinct abiotic stress responses in Pseudomonas aeruginosa.
PLOS Genet. 17 , e1009524 (2021). doi:10.1371/journal.
pgen.1009524; pmid: 33872310
154. J. R. Helliwell, A. J. Miller, W. R. Whalley, S. J. Mooney,
C. J. Sturrock, Quantifying the impact of microbes on soil
structural development and behaviour in wet soils.Soil Biol.
Biochem. 74 , 138–147 (2014). doi:10.1016/j.soilbio.2014.03.009
155. S. F. Wright, A. Upadhyaya, A survey of soils for aggregate
stability and glomalin, a glycoprotein produced by hyphae of
arbuscular mycorrhizal fungi.Plant Soil 198 , 97–107 (1998).
doi:10.1023/A:1004347701584
156. Q. S. Wuet al., Spatial distribution of glomalin-related soil
protein and its relationships with root mycorrhization, soil
aggregates, carbohydrates, activity of protease and
b-glucosidase in the rhizosphere of Citrus unshiu.Soil Biol.
Biochem. 45 , 181–183 (2012). doi:10.1016/j.soilbio.2011.10.002
157. I. M. Young, D. S. Feeney, A. G. O’Donnell, K. W. T. Goulding,
Fungi in century old managed soils could hold key to the
development of soil water repellency.Soil Biol. Biochem. 45 ,
125 – 127 (2012). doi:10.1016/j.soilbio.2011.10.007
158. W. Zheng, E. K. Morris, A. Lehmann, M. C. Rillig, Interplay of
soil water repellency, soil aggregation and organic carbon.
A meta-analysis.Geoderma 283 , 39–47 (2016). doi:10.1016/
j.geoderma.2016.07.025
159. O. Malam Issa, C. Défarge, J. Trichet, C. Valentin, J. L. Rajot,
Microbiotic soil crusts in the Sahel of Western Niger and their
influence on soil porosity and water dynamics.Catena 77 ,
48 – 55 (2009). doi:10.1016/j.catena.2008.12.013
160. A. Yair, inBiological Soil Crusts: Structure, Function, and
Management, J. Belnap, O. L. Lange, Eds. (Springer, 2001),
pp. 303–314.
161. S. Chamizo, Y. Cantón, E. Rodríguez-Caballero, F. Domingo,
Biocrusts positively affect the soil water balance in
semiarid ecosystems.Ecohydrology 9 , 1208–1221 (2016).
doi:10.1002/eco.1719
162. D. J. Eldridge, M. E. Tozer, S. Slangen, Soil hydrology is
independent of microphytic crust cover: Further evidence from
a wooded semiarid Australian rangeland.Arid Soil Res. Rehabil.
11 , 113–126 (1997). doi:10.1080/15324989709381465
163. S. D. Warren, inBiological Soil Crusts and Hydrology in North
American Deserts, J. Belnap, O. L. Lange, Eds. (Springer,
2001), pp. 327–337.
164. J. Belnap, The potential roles of biological soil crusts in
dryland hydrologic cycles.Hydrol. Processes 20 , 3159– 3178
(2006). doi:10.1002/hyp.6325
165. J. Belnap, R. Rosentreter, S. Leonard, J. Kaltenecker,
J. Williams, D. Eldridge,“Biological soil crusts: Ecology and
management”(US Department of the Interior, 2001).
166. R. L. Chazdon, Beyond deforestation: Restoring forests and
ecosystem services on degraded lands.Science 320 ,
1458 – 1460 (2008). doi:10.1126/science.1155365
167. J. K. Zimmerman, T. M. Aide, A. E. Lugo, inOld Fields:
Dynamics and Restoration of Abandoned Farmland,
V. A. Cramer, R. J. Hobbs, Eds. (Island, 2007), pp. 51–74.
168. K. D. Holl, T. M. Aide, When and where to actively restore
ecosystems?For. Ecol. Manage. 261 , 1558–1563 (2011).
doi:10.1016/j.foreco.2010.07.004
169. V. S. Whiffin, L. A. van Paassen, M. P. Harkes, Microbial
carbonate precipitation as a soil improvement technique.
Geomicrobiol. J. 24 , 417–423 (2007). doi:10.1080/
01490450701436505
170. J. S. Singh, Microbes: The chief ecological engineers in
reinstating equilibrium in degraded ecosystems.Agric. Ecosyst.
Environ. 203 , 80–82 (2015). doi:10.1016/j.agee.2015.01.026
171. B. Roncero-Ramoset al., Polyphasic evaluation of key
cyanobacteria in biocrusts from the most arid region in
Europe.PeerJ 7 , e6169 (2019). doi:10.7717/peerj.6169;
pmid: 30627491
172. V. Carbajo, B. den Braber, W. H. van der Putten, G. B. De Deyn,
Enhancement of late successional plants on ex-arable land by
soil inoculations.PLOS ONE 6 , e21943 (2011). doi:10.1371/
journal.pone.0021943; pmid: 21760929
173. M. Curciet al., Short-Term Effects of Sewage Sludge
Compost Amendment on Semiarid Soil.Soil Syst. 4 , 48
(2020). doi:10.3390/soilsystems4030048
174. M. J. Goss, A. Tubeileh, D. Goorahoo, A Review of the Use
of Organic Amendments and the Risk to Human Health.
Adv. Agron. 120 , 275–379 (2013). doi:10.1016%2FB978-0-12-
407686-0.00005-1
175. C. M. Kallenbach, R. T. Conant, F. Calderón, M. D. Wallenstein,
A novel soil amendment for enhancing soil moisture
retention and soil carbon in drought-prone soils.Geoderma
337 , 256–265 (2019). doi:10.1016/j.geoderma.2018.09.027
176. J. T. DeJonget al., Soil engineeringin vivo: Harnessing
natural biogeochemical systems for sustainable, multi-
functional engineering solutions.J. R. Soc. Interface 8 ,1– 15
(2011). doi:10.1098/rsif.2010.0270; pmid: 20829246
177. H. K. Gibbs, J. M. Salmon, Mapping the world’s degraded
lands.Appl. Geogr. 57 , 12–21 (2015). doi:10.1016/
j.apgeog.2014.11.024
178. Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services, The IPBES Assessment Report on
Land Degradation and Restoration (2018). doi:10.5281/
zenodo.3237393
179. S. D. Prince, inThe End of Desertification? Disputing
Environmental Change in the Drylands, R. Behnke, M. Mortimore,
Eds. (Springer, 2016), pp. 225–263.
180. W. Zhenget al., Plant Growth-Promoting Rhizobacteria (PGPR)
Reduce Evaporation and Increase Soil Water Retention.Water
Resour. Res. 54 , 3673–3687 (2018). doi:10.1029/2018WR022656
181. E. Volk, S. C. Iden, A. Furman, W. Durner, R. Rosenzweig,
Biofilm effect on soil hydraulic properties: Experimental
investigation using soil-grown real biofilm.Water Resour. Res.
52 , 5813–5828 (2016). doi:10.1002/2016WR018866
182. M. O. Omondiet al., Quantification of biochar effects on
soil hydrological properties using meta-analysis of literature
data.Geoderma 274 , 28–34 (2016). doi:10.1016/
j.geoderma.2016.03.029
183. D. Dec, J. Dörner, O. Becker-Fazekas, R. Horn, Effect of bulk
density on hydraulic properties of homogenized and structured
soils.Rev. Cienc. Suelo Nutr. Veg. 8 ,1–13 (2008).
184. J. T. Trevors, Sterilization and inhibition of microbial activity
in soil.J. Microbiol. Methods 26 , 53–59 (1996). doi:10.1016/
0167-7012(96)00843-3
185. N. P. McNamara, H. I. J. Black, N. A. Beresford, N. R. Parekh,
Effects of acute gamma irradiation on chemical, physical and
biological properties of soils.Appl. Soil Ecol. 24 , 117– 132
(2003). doi:10.1016/S0929-1393(03)00073-8
186. A. E. Bernset al., Effect of gamma-sterilization and autoclaving
on soil organic matter structure as studied by solid state
NMR, UV and fluorescence spectroscopy.Eur. J. Soil Sci. 59 ,
540 – 550 (2008). doi:10.1111/j.1365-2389.2008.01016.x
187. J. Bachmann, R. Horton, S. A. Grant, R. R. van der Ploeg,
Temperature Dependence of Water Retention Curves for
Wettable and Water-Repellent Soils.Soil Sci. Soc. Am. J. 66 ,
44 – 52 (2002). doi:10.2136/sssaj2002.4400
188. K. Seki, T. Miyazaki, M. Nakano, Effects of microorganisms on
hydraulic conductivity decrease in infiltration.Eur. J. Soil Sci. 49 ,
231 – 236 (1998). doi:10.1046/j.1365-2389.1998.00152.x
189. G. Colicaet al., Microbial secreted exopolysaccharides affect
the hydrological behavior of induced biological soil crusts
in desert sandy soils.Soil Biol. Biochem. 68 , 62–70 (2014).
doi:10.1016/j.soilbio.2013.09.017
ACKNOWLEDGMENTS
O.C. acknowledges support from the NWO Open Mind grant,
G.B.D.D. thanks FoodShot Global for their support through the
GroundBreaker Prize, and all authors thank A. Van Dijk for valuable
comments and English proofreading.Author contributions:
Conceptualization: O.C., M.v.d.P., G.B.D.D. Visualization: O.C.,
M.v.d.P. Funding acquisition: M.v.d.P., G.B.D.D. Writing–original
draft: O.C., M.v.d.P., G.B.D.D. Writing–review and editing: O.C.,
M.v.d.P., G.B.D.D.Competing interests:The authors declare that
they have no competing interests.
10.1126/science.abe0725
Cobanet al.,Science 375 , eabe0725 (2022) 4 March 2022 10 of 10
RESEARCH | REVIEW