Science - USA (2022-03-04)

(Maropa) #1

  1. C. M. Kallenbach, S. D. Frey, A. S. Grandy, Direct evidence for
    microbial-derived soil organic matter formation and its
    ecophysiological controls.Nat. Commun. 7 , 13630 (2016).
    doi:10.1038/ncomms13630; pmid: 27892466

  2. J. Six, H. Bossuyt, S. Degryze, K. Denef, A history of research
    on the link between (micro)aggregates, soil biota, and soil
    organic matter dynamics.Soil Tillage Res. 79 ,7–31 (2004).
    doi:10.1016/j.still.2004.03.008

  3. M. C. Rillig, Arbuscular mycorrhizae, glomalin, and soil
    aggregation.Can. J. Soil Sci. 84 , 355–363 (2004).
    doi:10.4141/S04-003

  4. N. Requena, E. Perez-Solis, C. Azcón-Aguilar, P. Jeffries,
    J.-M. Barea, Management of indigenous plant-microbe
    symbioses aids restoration of desertified ecosystems.
    Appl. Environ. Microbiol. 67 , 495–498 (2001). doi:10.1128/
    AEM.67.2.495-498.2001; pmid: 11157208

  5. A. Medina, R. Azcón, Effectiveness of the application of
    arbuscular mycorrhiza fungi and organic amendments to
    improve soil quality and plant performance under stress
    conditions.J. Soil Sci. Plant Nutr. 10 , 354–372 (2010).
    doi:10.4067/S0718-95162010000100009

  6. K. K. Jefferson, What drives bacteria to produce a biofilm?
    FEMS Microbiol. Lett. 236 , 163–173 (2004). doi:10.1111/
    j.1574-6968.2004.tb09643.x; pmid: 15251193

  7. M. L. Dennis, J. P. Turner, Hydraulic Conductivity of
    Compacted Soil Treated with Biofilm.J. Geotech. Geoenviron.
    Eng. 124 , 120–127 (1998). doi:10.1061/(ASCE)1090-0241
    (1998)124:2(120)

  8. V. Ivanov, J. Chu, Applications of microorganisms to
    geotechnical engineering for bioclogging and biocementation
    of soil in situ.Rev. Environ. Sci. Biotechnol. 7 , 139– 153
    (2008). doi:10.1007/s11157-007-9126-3

  9. C. Chenu, Clay- or sand-polysaccharide associations as
    models for the interface between micro-organisms and soil:
    Water related properties and microstructure.Geoderma 56 ,
    143 – 156 (1993). doi:10.1016/0016-7061(93)90106-U

  10. E. B. Roberson, M. K. Firestone, Relationship between
    desiccation and exopolysaccharide production in a soil
    Pseudomonas sp.Appl. Environ. Microbiol. 58 , 1284– 1291
    (1992). doi:10.1128/aem.58.4.1284-1291.1992;
    pmid: 16348695

  11. D. Or, S. Phutane, A. Dechesne, Extracellular Polymeric
    Substances Affecting Pore‐Scale Hydrologic Conditions for
    Bacterial Activity in Unsaturated Soils.Vadose Zone J. 6 ,
    298 – 305 (2007). doi:10.2136/vzj2006.0080

  12. L. J. Henao, K. Mazeau, Molecular modelling studies of clay-
    exopolysaccharide complexes: Soil aggregation and water
    retention phenomena.Mater. Sci. Eng. C 29 , 2326– 2332
    (2009). doi:10.1016/j.msec.2009.06.001

  13. W. S. Changet al., Alginate production by Pseudomonas
    putida creates a hydrated microenvironment and contributes
    to biofilm architecture and stress tolerance under water-
    limiting conditions.J. Bacteriol. 189 , 8290–8299 (2007).
    doi:10.1128/JB.00727-07

  14. Y. S. Guoet al., Bacterial extracellular polymeric substances
    amplify water content variability at the pore scale.Front.
    Environ. Sci. 6 , 93 (2018). doi:10.3389/fenvs.2018.00093

  15. D. Or, B. F. Smets, J. M. Wraith, A. Dechesne, S. P. Friedman,
    Physical constraints affecting bacterial habitats and activity
    in unsaturated porous media - a review.Adv. Water Resour. 30 ,
    1505 – 1527 (2007). doi:10.1016/j.advwatres.2006.05.025

  16. B. C. Cruzet al., Pore-scale water dynamics during drying
    and the impacts of structure and surface wettability.
    Water Resour. Res. 53 , 5585–5600 (2017). doi:10.1002/
    2016WR019862

  17. D. B. Georgeet al., The effects of microbiotic soil crusts on
    soil water loss.Arid Land Res. Manage. 17 , 113–125 (2003).
    doi:10.1080/15324980301588

  18. S. D. Woodcocket al., Trehalose anda-glucan mediate
    distinct abiotic stress responses in Pseudomonas aeruginosa.
    PLOS Genet. 17 , e1009524 (2021). doi:10.1371/journal.
    pgen.1009524; pmid: 33872310
    154. J. R. Helliwell, A. J. Miller, W. R. Whalley, S. J. Mooney,
    C. J. Sturrock, Quantifying the impact of microbes on soil
    structural development and behaviour in wet soils.Soil Biol.
    Biochem. 74 , 138–147 (2014). doi:10.1016/j.soilbio.2014.03.009
    155. S. F. Wright, A. Upadhyaya, A survey of soils for aggregate
    stability and glomalin, a glycoprotein produced by hyphae of
    arbuscular mycorrhizal fungi.Plant Soil 198 , 97–107 (1998).
    doi:10.1023/A:1004347701584
    156. Q. S. Wuet al., Spatial distribution of glomalin-related soil
    protein and its relationships with root mycorrhization, soil
    aggregates, carbohydrates, activity of protease and
    b-glucosidase in the rhizosphere of Citrus unshiu.Soil Biol.
    Biochem. 45 , 181–183 (2012). doi:10.1016/j.soilbio.2011.10.002
    157. I. M. Young, D. S. Feeney, A. G. O’Donnell, K. W. T. Goulding,
    Fungi in century old managed soils could hold key to the
    development of soil water repellency.Soil Biol. Biochem. 45 ,
    125 – 127 (2012). doi:10.1016/j.soilbio.2011.10.007
    158. W. Zheng, E. K. Morris, A. Lehmann, M. C. Rillig, Interplay of
    soil water repellency, soil aggregation and organic carbon.
    A meta-analysis.Geoderma 283 , 39–47 (2016). doi:10.1016/
    j.geoderma.2016.07.025
    159. O. Malam Issa, C. Défarge, J. Trichet, C. Valentin, J. L. Rajot,
    Microbiotic soil crusts in the Sahel of Western Niger and their
    influence on soil porosity and water dynamics.Catena 77 ,
    48 – 55 (2009). doi:10.1016/j.catena.2008.12.013
    160. A. Yair, inBiological Soil Crusts: Structure, Function, and
    Management, J. Belnap, O. L. Lange, Eds. (Springer, 2001),
    pp. 303–314.
    161. S. Chamizo, Y. Cantón, E. Rodríguez-Caballero, F. Domingo,
    Biocrusts positively affect the soil water balance in
    semiarid ecosystems.Ecohydrology 9 , 1208–1221 (2016).
    doi:10.1002/eco.1719
    162. D. J. Eldridge, M. E. Tozer, S. Slangen, Soil hydrology is
    independent of microphytic crust cover: Further evidence from
    a wooded semiarid Australian rangeland.Arid Soil Res. Rehabil.
    11 , 113–126 (1997). doi:10.1080/15324989709381465
    163. S. D. Warren, inBiological Soil Crusts and Hydrology in North
    American Deserts, J. Belnap, O. L. Lange, Eds. (Springer,
    2001), pp. 327–337.
    164. J. Belnap, The potential roles of biological soil crusts in
    dryland hydrologic cycles.Hydrol. Processes 20 , 3159– 3178
    (2006). doi:10.1002/hyp.6325
    165. J. Belnap, R. Rosentreter, S. Leonard, J. Kaltenecker,
    J. Williams, D. Eldridge,“Biological soil crusts: Ecology and
    management”(US Department of the Interior, 2001).
    166. R. L. Chazdon, Beyond deforestation: Restoring forests and
    ecosystem services on degraded lands.Science 320 ,
    1458 – 1460 (2008). doi:10.1126/science.1155365
    167. J. K. Zimmerman, T. M. Aide, A. E. Lugo, inOld Fields:
    Dynamics and Restoration of Abandoned Farmland,
    V. A. Cramer, R. J. Hobbs, Eds. (Island, 2007), pp. 51–74.
    168. K. D. Holl, T. M. Aide, When and where to actively restore
    ecosystems?For. Ecol. Manage. 261 , 1558–1563 (2011).
    doi:10.1016/j.foreco.2010.07.004
    169. V. S. Whiffin, L. A. van Paassen, M. P. Harkes, Microbial
    carbonate precipitation as a soil improvement technique.
    Geomicrobiol. J. 24 , 417–423 (2007). doi:10.1080/
    01490450701436505
    170. J. S. Singh, Microbes: The chief ecological engineers in
    reinstating equilibrium in degraded ecosystems.Agric. Ecosyst.
    Environ. 203 , 80–82 (2015). doi:10.1016/j.agee.2015.01.026
    171. B. Roncero-Ramoset al., Polyphasic evaluation of key
    cyanobacteria in biocrusts from the most arid region in
    Europe.PeerJ 7 , e6169 (2019). doi:10.7717/peerj.6169;
    pmid: 30627491
    172. V. Carbajo, B. den Braber, W. H. van der Putten, G. B. De Deyn,
    Enhancement of late successional plants on ex-arable land by
    soil inoculations.PLOS ONE 6 , e21943 (2011). doi:10.1371/
    journal.pone.0021943; pmid: 21760929
    173. M. Curciet al., Short-Term Effects of Sewage Sludge
    Compost Amendment on Semiarid Soil.Soil Syst. 4 , 48
    (2020). doi:10.3390/soilsystems4030048
    174. M. J. Goss, A. Tubeileh, D. Goorahoo, A Review of the Use
    of Organic Amendments and the Risk to Human Health.
    Adv. Agron. 120 , 275–379 (2013). doi:10.1016%2FB978-0-12-
    407686-0.00005-1
    175. C. M. Kallenbach, R. T. Conant, F. Calderón, M. D. Wallenstein,
    A novel soil amendment for enhancing soil moisture
    retention and soil carbon in drought-prone soils.Geoderma
    337 , 256–265 (2019). doi:10.1016/j.geoderma.2018.09.027
    176. J. T. DeJonget al., Soil engineeringin vivo: Harnessing
    natural biogeochemical systems for sustainable, multi-
    functional engineering solutions.J. R. Soc. Interface 8 ,1– 15
    (2011). doi:10.1098/rsif.2010.0270; pmid: 20829246
    177. H. K. Gibbs, J. M. Salmon, Mapping the world’s degraded
    lands.Appl. Geogr. 57 , 12–21 (2015). doi:10.1016/
    j.apgeog.2014.11.024
    178. Intergovernmental Science-Policy Platform on Biodiversity
    and Ecosystem Services, The IPBES Assessment Report on
    Land Degradation and Restoration (2018). doi:10.5281/
    zenodo.3237393
    179. S. D. Prince, inThe End of Desertification? Disputing
    Environmental Change in the Drylands, R. Behnke, M. Mortimore,
    Eds. (Springer, 2016), pp. 225–263.
    180. W. Zhenget al., Plant Growth-Promoting Rhizobacteria (PGPR)
    Reduce Evaporation and Increase Soil Water Retention.Water
    Resour. Res. 54 , 3673–3687 (2018). doi:10.1029/2018WR022656
    181. E. Volk, S. C. Iden, A. Furman, W. Durner, R. Rosenzweig,
    Biofilm effect on soil hydraulic properties: Experimental
    investigation using soil-grown real biofilm.Water Resour. Res.
    52 , 5813–5828 (2016). doi:10.1002/2016WR018866
    182. M. O. Omondiet al., Quantification of biochar effects on
    soil hydrological properties using meta-analysis of literature
    data.Geoderma 274 , 28–34 (2016). doi:10.1016/
    j.geoderma.2016.03.029
    183. D. Dec, J. Dörner, O. Becker-Fazekas, R. Horn, Effect of bulk
    density on hydraulic properties of homogenized and structured
    soils.Rev. Cienc. Suelo Nutr. Veg. 8 ,1–13 (2008).
    184. J. T. Trevors, Sterilization and inhibition of microbial activity
    in soil.J. Microbiol. Methods 26 , 53–59 (1996). doi:10.1016/
    0167-7012(96)00843-3
    185. N. P. McNamara, H. I. J. Black, N. A. Beresford, N. R. Parekh,
    Effects of acute gamma irradiation on chemical, physical and
    biological properties of soils.Appl. Soil Ecol. 24 , 117– 132
    (2003). doi:10.1016/S0929-1393(03)00073-8
    186. A. E. Bernset al., Effect of gamma-sterilization and autoclaving
    on soil organic matter structure as studied by solid state
    NMR, UV and fluorescence spectroscopy.Eur. J. Soil Sci. 59 ,
    540 – 550 (2008). doi:10.1111/j.1365-2389.2008.01016.x
    187. J. Bachmann, R. Horton, S. A. Grant, R. R. van der Ploeg,
    Temperature Dependence of Water Retention Curves for
    Wettable and Water-Repellent Soils.Soil Sci. Soc. Am. J. 66 ,
    44 – 52 (2002). doi:10.2136/sssaj2002.4400
    188. K. Seki, T. Miyazaki, M. Nakano, Effects of microorganisms on
    hydraulic conductivity decrease in infiltration.Eur. J. Soil Sci. 49 ,
    231 – 236 (1998). doi:10.1046/j.1365-2389.1998.00152.x
    189. G. Colicaet al., Microbial secreted exopolysaccharides affect
    the hydrological behavior of induced biological soil crusts
    in desert sandy soils.Soil Biol. Biochem. 68 , 62–70 (2014).
    doi:10.1016/j.soilbio.2013.09.017


ACKNOWLEDGMENTS
O.C. acknowledges support from the NWO Open Mind grant,
G.B.D.D. thanks FoodShot Global for their support through the
GroundBreaker Prize, and all authors thank A. Van Dijk for valuable
comments and English proofreading.Author contributions:
Conceptualization: O.C., M.v.d.P., G.B.D.D. Visualization: O.C.,
M.v.d.P. Funding acquisition: M.v.d.P., G.B.D.D. Writing–original
draft: O.C., M.v.d.P., G.B.D.D. Writing–review and editing: O.C.,
M.v.d.P., G.B.D.D.Competing interests:The authors declare that
they have no competing interests.

10.1126/science.abe0725

Cobanet al.,Science 375 , eabe0725 (2022) 4 March 2022 10 of 10


RESEARCH | REVIEW

Free download pdf