4.3Jointly Distributed Random Variables 101
SOLUTION
(a) P{X>1,Y< 1 }=∫ 10∫∞12 e−xe−^2 ydx dy=∫ 102 e−^2 y(−e−x|∞ 1 )dy=e−^1∫ 102 e−^2 ydy=e−^1 (1−e−^2 )(b) P{X<Y}=∫∫(x,y):x<y2 e−xe−^2 ydx dy=∫∞0∫y02 e−xe−^2 ydx dy=∫∞02 e−^2 y(1−e−y)dy=∫∞02 e−^2 ydy−∫∞02 e−^3 ydy= 1 −^23
=^13(c) P{X<a}=∫a0∫∞02 e−^2 ye−xdy dx=∫a0e−xdx= 1 −e−a ■4.3.1 Independent Random Variables
The random variablesXandY are said to be independent if for any two sets of real
numbersAandB
P{X∈A,Y ∈B}=P{X∈A}P{Y∈B} (4.3.7)In other words,XandYare independent if, for allAandB, the eventsEA={X ∈A}
andFB={Y∈B}are independent.
It can be shown by using the three axioms of probability that Equation 4.3.7 will follow
if and only if for alla,b
P{X≤a,Y≤b}=P{X≤a}P{Y≤b}