114 Chapter 4:Random Variables and Expectation
EXAMPLE 4.5c Applying Proposition 4.5.1 to Example 4.5a yields
E[X^2 ]= 02 (0.2)+(1^2 )(0.5)+(2^2 )(0.3)=1.7which, of course, checks with the result derived in Example 4.5a. ■
EXAMPLE 4.5d Applying the proposition to Example 4.5b yields
E[X^3 ]=∫ 10x^3 dx (sincef(x)=1, 0<x<1)=1
4■An immediate corollary of Proposition 4.5.1 is the following.
Corollary 4.5.2Ifaandbare constants, then
E[aX+b]=aE[X]+bProofIn the discrete case,
E[aX+b]=∑x(ax+b)p(x)=a∑xxp(x)+b∑xp(x)=aE[X]+bIn the continuous case,
E[aX+b]=∫∞−∞(ax+b)f(x)dx=a∫∞−∞xf(x)dx+b∫∞−∞f(x)dx=aE[X]+b If we takea=0 in Corollary 4.5.2, we see thatE[b]=b