Introduction to Probability and Statistics for Engineers and Scientists

(Sean Pound) #1

5.5Normal Random Variables 169


The moment generating function of a normal random variable with parametersμand
σ^2 is derived as follows:


φ(t)=E[etX]

=

1

2 πσ

∫∞

−∞

etxe−(x−μ)

(^2) /2σ 2
dx


1

2 π
eμt
∫∞
−∞
etσye−y
(^2) /2
dy by lettingy=
x−μ
σ


eμt

2 π
∫∞
−∞
exp
{

[
y^2 − 2 tσy
2
]}
dy


eμt

2 π
∫∞
−∞
exp
{

(y−tσ)^2
2



  • t^2 σ^2
    2
    }
    dy
    =exp
    {
    μt+
    σ^2 t^2
    2
    }
    1

    2 π
    ∫∞
    −∞
    e−(y−tσ)
    (^2) /2
    dy
    =exp
    {
    μt+
    σ^2 t^2
    2
    }
    (5.5.1)
    where the last equality follows since
    1

    2 π
    e−(y−tσ)
    (^2) /2
    is the density of a normal random variable (having parameterstσand 1) and its integral
    must thus equal 1.
    Upon differentiating Equation 5.5.1, we obtain
    φ′(t)=(μ+tσ^2 ) exp
    {
    μt+σ^2
    t^2
    2
    }
    φ′′(t)=σ^2 exp
    {
    μt+σ^2
    t^2
    2
    }
    +exp
    {
    μt+σ^2
    t^2
    2
    }
    (μ+tσ^2 )^2
    Hence,
    E[X]=φ′(0)=μ
    E[X^2 ]=φ′′(0)=σ^2 +μ^2
    and so
    E[X]=μ
    Var(X)=E[X^2 ]−(E[X])^2 =σ^2
    Thusμandσ^2 represent respectively the mean and variance of the distribution.

Free download pdf