184 Chapter 5: Special Random Variables
=(
λ
λ−t)α 1 (
λ
λ−t)α 2
from Equation 5.7.2=(
λ
λ−t)α 1 +α 2which is seen to be the moment generating function of a gamma (α 1 +α 2 ,λ) random
variable. Since a moment generating function uniquely characterizes a distribution, the
result entails.
The foregoing result easily generalizes to yield the following proposition.
PROPOSITION 5.7.1 IfXi,i =1,...,nare independent gamma random variables with
respective parameters (αi,λ), then
∑n
i= 1 Xiis gamma with parameters∑n
i= 1 αi,λ.0.070.060.050.040.030.020.01(^003040506070)
(b)
012 3456789101112
(a)
0.6
0.5
0.4
0.3
0.2
0.1
a = 3
a = 4
a = 5
a = 0.5
a = 2
FIGURE 5.11 Graphs of the gamma (α,1) density for (a)α=.5, 2, 3, 4, 5and (b)α= 50.