236 Chapter 7: Parameter Estimation
EXAMPLE 7.2e Maximum Likelihood Estimator in a Normal Population Suppose X 1 ,...,Xn
are independent, normal random variables each with unknown meanμand unknown
standard deviationσ. The joint density is given by
f(x 1 ,...,xn|μ,σ)=∏ni= 11
√
2 πσexp[
−(xi−μ)^2
2 σ^2]=(
1
2 π)n/2
1
σnexp
−∑n
1(xi−μ)^22 σ^2
The logarithm of the likelihood is thus given by
logf(x 1 ,...,xn|μ,σ)=−n
2log(2π)−nlogσ−∑n
1(xi−μ)^22 σ^2In order to find the value ofμandσmaximizing the foregoing, we compute
∂
∂μlogf(x 1 ,...,xn|μ,σ)=∑n
i= 1(xi−μ)σ^2∂
∂σlogf(x 1 ,...,xn|μ,σ)=−n
σ+∑n
1(xi−μ)^2σ^3Equating these equations to zero yields that
μˆ=∑ni= 1xi/nand
σˆ =[ n
∑i= 1(xi−ˆμ)^2 /n]1/2