7.5Approximate Confidence Interval for the Mean of a Bernoulli Random Variable 261
TABLE 7.2 100(1−σ)Percent Confidence Intervals forμ 1 −μ 2
X 1 ,...,Xn∼N(μ 1 ,σ 12 )
Y 1 ,...,Ym∼N(μ 2 ,σ 22 )X=∑ni= 1Xi/n, S^21 =∑ni= 1(Xi−X)^2 /(n−1)Y=∑mi= 1Yi/n, S 22 =∑mi= 1(Yi−Y)^2 /(m−1)Assumption Confidence Interval
σ 1 ,σ 2 known X−Y±zα/2
√
σ 12 /n+σ 22 /mσ 1 ,σ 2 unknown but equal X−Y±tα/2,n+m− 2
√(
1
n+^1
m)(n−1)S 2
1 +(m−1)S2
2
n+m− 2Assumption Lower Confidence Interval
σ 1 ,σ 2 known (−∞,X−Y+zα
√
σ 12 /n+σ 22 /m)σ 1 ,σ 2 unknown but equal
−∞,X−Y+tα,n+m− 2√(
1
n+1
m)(n−1)S 2
1 +(m−1)S 22
n+m− 2
Note: Upper confidence intervals forμ 1 −μ 2 are obtained from lower confidence intervals forμ 2 −μ 1.
the normal approximation to the binomial thatXis approximately normally distributed
with meannpand variancenp(1−p). Hence,
X−np
√
np(1−p)·
∼N(0, 1) (7.5.1)where∼· means “is approximately distributed as.” Therefore, for anyα∈(0, 1),
P{
−zα/2<X−np
√
np(1−p)<zα/2}
≈ 1 −αand so ifXis observed to equalx, then an approximate 100(1−α) percent confidence
regionforpis
{
p:−zα/2<
x−np
√
np(1−p)<zα/2}The foregoing region, however, is not an interval. To obtain a confidenceintervalfor
p, letpˆ=X/nbe the fraction of the items that meet the standards. From Example 7.2a,