406 Chapter 9: Regression
That is, it is an unbiased estimator. Also, using the fact that the variance of a random
variable is equal to the covariance between that random variable and itself, we see that
Var
∑ki= 0xiBi
=Cov
∑ki= 0xiBi,∑kj= 0xjBj
(9.10.9)=∑ki= 0∑kj= 0xixjCov(Bi,Bj)If we letxdenote the matrix
x=
x 0
x 1
..
.
xk
then, recalling that Cov(Bi,Bj)/σ^2 is the element in the (i+1)st row and (j+1)st column
of (X′X)−^1 , we can express Equation 9.10.9 as
Var
∑ki= 0xiBi
=x′(X′X)−^1 xσ^2 (9.10.10)Using Equations 9.10.8 and 9.10.10, we see that
∑k
i= 0xiBi−∑k
i= 0xiβiσ√
x′(X′X)−^1 x∼N(0, 1)If we now replaceσby its estimator
√
SSR/(n−k−1) we obtain, by the usual argument,
that
∑k
i= 0xiBi−∑k
i= 0xiβi
√
SSR
(n−k−1)√
x′(X′X)−^1 x∼tn−k− 1which gives rise to the following confidence interval estimator of
∑k
i= 0 xiβi.Confidence Interval Estimate ofE[Y|x] =∑k
i=0xiβi,(x^0 ≡1)A 100(1−a) percent confidence interval estimate of
∑k
i= 0 xiβiis given by
∑ki= 0xibi±√
ssr
(n−k−1)√
x′(X′X)−^1 x ta/2,n−k− 1