Fundamentals of Plasma Physics

(C. Jardin) #1

94 Chapter 3. Motion of a single plasma particle


The total magnetic force is

Jtotal×B = (JM+J∇B+Jc+JP)×B

=







−∇×


(


P⊥Bˆ


B


)


−P⊥


∇B×B


B^3


−P‖


Bˆ·∇Bˆ×B


B^2


+


ρ
B^2

dE
dt






×B.


(3.133)


The gradBcurrent cancelspartof the magnetization current as follows:


∇×


(


P⊥Bˆ


B


)


+P⊥


∇B×B


B^3


=


[



(


1


B


)


×P⊥Bˆ+


1


B


∇×


(


P⊥Bˆ


)]


+P⊥


∇B×B


B^3


=


1


B


∇×


(


P⊥Bˆ


)


=


P⊥


B


∇×Bˆ+


∇P⊥×Bˆ


B


(3.134)


so that


Jtotal×B=−

[


P⊥∇×Bˆ+∇P⊥×Bˆ+P‖Bˆ·∇Bˆ×Bˆ−


ρ
B

dE
dt

]


×B.ˆ (3.135)


The first term can be recast using the vector identity



(


Bˆ·Bˆ


2


)


= 0 =Bˆ·∇Bˆ+Bˆ×∇×Bˆ (3.136)


while the electric field can be replaced usingE=−U×Bto give


Jtotal×B=−

(


P⊥−P‖


)


Bˆ·∇Bˆ+∇⊥P⊥−ρ
B

d(U×B)
dt

×B.ˆ (3.137)


Here the relation


[


Bˆ·∇Bˆ


]



=Bˆ·∇Bˆhas been used;this relation follows from Eq.

(3.136). Finally, it is observed that
[
∇·


(


BˆBˆ


)]



=


[(


∇·Bˆ


)


Bˆ+Bˆ·∇Bˆ


]



=Bˆ·∇Bˆ (3.138)


so
(
P⊥−P‖


)


Bˆ·∇Bˆ=


(


P⊥−P‖


)[


∇·


(


BˆBˆ


)]



=


[


∇·


{(


P⊥−P‖


)


BˆBˆ


}]



.(3.139)


Furthermore,
ρ
B


d(U×B)
dt

×Bˆ≃−


[


ρ
dU
dt

]



(3.140)


since it has been assumed that the magnetic field is time-independent. Inserting these last
two results in Eq.(3.137) gives


Jtotal×B=

[


∇·


{(


P⊥−P‖


)


BˆBˆ


}]



+∇⊥P⊥+


[


ρ
dU
dt

]



(3.141)

Free download pdf