Fundamentals of Plasma Physics

(C. Jardin) #1

390 Chapter 13. Fokker-Planck theory of collisions


and so, using Eq.(13.44),


hF(v)=

nFmT
μ

(


mF
2 πκTF

) 3 / 2 ∫


exp

(


−mFv′^2 / 2 κTF

)


|v−v′|

dv′. (13.54)

The velocity integral in Eq.(13.54) can be evaluated using standard means (see assign-
ments) to obtain


hF(v)=

nFmT
μv

erf

(√


mF
2 κTF

v

)


(13.55)


where


erf(x)=

2



π

∫x

0

exp(−w^2 )dw (13.56)

is the Error Function.
Thus, Eq.(13.52) becomes


∂uT
∂t

=


niq^2 Tq^2 ilnΛ
4 πε^20 m^2 T

mT
μi

{



∂v

[


v−^1 erf

(√


mi
2 κTi

v

)]}


v=u 0

+

neq^2 Tqe^2 lnΛ
4 πε^20 m^2 T

mT
μe

{



∂v

[


v−^1 erf

(√


me
2 κTe

v

)]}


v=u 0

(13.57)


whereμ−i,e^1 =m−i,e^1 +m−T^1.
This can be further simplified by noting (i) quasi-neutrality implies


niZqi+neqe=0 (13.58)

whereZis the charge of the ions, (ii) the masses are related by


mT
μi,e

=1+


mT
mi,e

, (13.59)


and (iii) the velocity gradient of the Error Function must be in the direction ofu 0 because
that is the only direction there is in the problem. Using these relationships and realizing
that both the left and right sides are in the direction ofu,Eq.(13.57) becomes


∂u
∂t

=


nee^2 lnΛ
4 πε^20

q^2 T
m^2 T




Z


(


1+


mT
mi

)


d
du





erf

(√


mi
2 κTi

u

)


u





+


(


1+


mT
me

)


d
du





erf

(√


me
2 κTe

u

)


u








. (13.60)


Let us define
ξi,e=


mi,e
2 κTi,e

u (13.61)
Free download pdf