Fundamentals of Plasma Physics

(C. Jardin) #1
14.3 Echoes 421

a similar procedure for Fourier transforms gives


F(g(x)h(x)) =

∫∞


−∞

g(x)h(x)eikxdx

=


∫∞


−∞

[


1


2 π

∫∞


−∞

̃g(k′)e−ik

′x
dk′

]


h(x)eikxdx

=


1


2 π

∫∞


−∞

dk′g ̃(k′)

∫∞


−∞

h(x)ei(k−k

′)x
dx

=


1


2 π

∫∞


−∞

dk′g ̃(k′) ̃h(k−k′). (14.125)

Thus, the Fourier-Laplace transform of Eq.(14.114) gives

(p+ikv)f ̃ 2 (p,k) +ik
e
m

∂f 0
∂v

̃φ 2 (p,k)

= −


e
m


∂v

[∫



−∞

dk′
2 π

∫b+i∞

b−i∞

dp′
2 π
k′ ̃φ 1 (p′,k′)f ̃ 1 (p−p′,k−k′)

]


.(14.126)


Because the convolution integrals are notationally unwieldy, to clarifythe notation we
define the new dummy variables


̄k′ = k−k′
̄p′ = p−p′ (14.127)

so that Eq.(14.126) becomes


(p+ikv)f ̃ 2 (p,k) +ik

e
m

∂f 0
∂v

φ ̃ 2 (p,k)

= −


e
m


∂v

[∫



−∞

dk′
2 π

∫b+i∞

b−i∞

dp′
2 π

k′φ ̃ 1 (p′,k′)f ̃ 1 ( ̄p′,k ̄′)

]


. (14.128)


The factors in the convolution integral can be expressed in terms of the original driving
potential using Eqs.(14.120) and (14.122) to obtain


(p+ikv)f ̃ 2 (p,k) +ik
e
m

∂f 0
∂v

φ ̃ 2 (p,k)=∂
∂v

χ(p,k,v) (14.129)

where the non-linear convolution term is


χ(p,k,v) =

(e
m

) 2 ∫∞


−∞

dk′
2 π

∫b+i∞

b−i∞

dp′
2 π

{


k′

φ ̃ext(p′,k′)
D(p′,k′)

×


i ̄k′
p ̄′+i ̄k′v

φ ̃ext( ̄p′, ̄k′)
D( ̄p′,k ̄′)

∂f 0
∂v

}


. (14.130)

Free download pdf