Fundamentals of Plasma Physics

(C. Jardin) #1
16.5 Diocotron modes 475

the wall boundary conditionψ(a) =0. Since the solutions of Eq.(16.82) areψ∼r±l, the
inner solution must be


ψ=α

(r
a

)l
for 0 ≤r<s (16.83)

and the outer solution must be


ψ=β

((


r
a

)l

(r
a

)−l)
fors<r≤a (16.84)

where the coefficientsαandβare to be determined.
Integration of Eq.(16.80) across the delta function fromr=s−tor=s+gives the
jump condition [
d
dr


ψ(r,s)

]s+

s−

=− 1 (16.85)


and integrating a second time shows thatψmust be continuous atr=s.These jump and
continuity conditions give two coupled equations inαandβ,


βl
a

((


s
a

)l− 1
+

(s
a

)−l− 1 )

αl
a

(s
a

)l− 1
= − 1 (16.86)

β

((


s
a

)l

(s
a

)−l)
−α

(s
a

)l
= 0. (16.87)

Solving forαandβgives the Green’s function,


ψ(r,s)=











a
2 l

(s
a

)l+1((r
a

)l

(r
a

)−l)
forr>s


a
2 l

(r
a

)l((s
a

)l+1

(s
a

)−l+1)
forr<s;

(16.88)


this satisfies Eq.(16.80) and also the boundary conditions atr= 0andr=a.Using the
Green’s function in Eq.(16.81) gives


̃φl(r) = q
ε 0

[∫r

0

dsψ(r,s) ̃nl(s)+

∫a

r

dsψ(r,s) ̃nl(s)

]


= −


a
2 l

q
ε 0





∫r
0 ds

((


s
a

)l+1((r
a

)l

(r
a

)−l))
̃nl(s)

+

∫a
rds

((


r
a

)l((s
a

)l+1

(s
a

)−l+1))
n ̃l(s)




(16.89).


Finally, using Eq.(16.77) to substitute for ̃nl(s)gives


φ ̃l(r)= q
2 ε 0 B





∫r

0

ds

sl
al

(


rl
al


al
rl

) ̃


φl(s)
ω−lω 0 (s)

dn 0
ds
+

∫a

r

ds
rl
al

(


sl
al


al
sl

) ̃


φl(s)
ω−lω 0 (s)

dn 0
ds




. (16.90)


This integral equation forφ ̃l(r)not only prescribes the mode dynamics, but also explic-
itly incorporates the spatial boundary conditions. The resonant denominatorsω−lω 0 (s)in

Free download pdf