MODERN COSMOLOGY

(Axel Boer) #1

  • Silvio Bonometto 1 The physics of the early universe (an overview)

  • 1.1 The physics of the early universe: an overview

    • 1.1.1 The middle-age cosmology

    • 1.1.2 Inflationary theories

    • 1.1.3 Links between cosmology and particle physics

    • 1.1.4 Basic questions and tentative answers



  • John A Peacock 2 An introduction to the physics of cosmology

  • 2.1 Aspects of general relativity

    • 2.1.1 The equivalence principle

    • 2.1.2 Applications of gravitational time dilation



  • 2.2 The energy–momentum tensor

    • 2.2.1 Relativistic fluid mechanics



  • 2.3 The field equations

    • 2.3.1 Newtonian limit

    • 2.3.2 Pressure as a source of gravity

    • 2.3.3 Energy density of the vacuum



  • 2.4 The Friedmann models

    • 2.4.1 Cosmological coordinates

    • 2.4.2 The redshift

    • 2.4.3 Dynamics of the expansion

    • 2.4.4 Solutions to the Friedmann equation

    • 2.4.5 Horizons

    • 2.4.6 Observations in cosmology

    • 2.4.7 The meaning of an expanding universe



  • 2.5 Inflationary cosmology

    • 2.5.1 Inflation field dynamics

    • 2.5.2 Ending inflation

    • 2.5.3 Relic fluctuations from inflation

    • 2.5.4 Gravity waves and tilt vi Contents

    • 2.5.5 Evidence for vacuum energy at late times

    • 2.5.6 Cosmic coincidence



  • 2.6 Dynamics of structure formation

    • 2.6.1 Linear perturbations

    • 2.6.2 Dynamical effects of radiation

    • 2.6.3 The peculiar velocity field

    • 2.6.4 Transfer functions

    • 2.6.5 The spherical model



  • 2.7 Quantifying large-scale structure

    • 2.7.1 Fourier analysis of density fluctuations

    • 2.7.2 The CDM model

    • 2.7.3 Karhunen–Lo`eve and all that

    • 2.7.4 Projection on the sky

    • 2.7.5 Nonlinear clustering: a problem for CDM?

    • 2.7.6 Real-space and redshift-space clustering

    • 2.7.7 The state of the art in LSS

    • 2.7.8 Galaxy formation and biased clustering



  • 2.8 Cosmic background fluctuations

    • 2.8.1 The hot big bang and the microwave background

    • 2.8.2 Mechanisms for primary fluctuations

    • 2.8.3 The temperature power spectrum

    • 2.8.4 Large-scale fluctuations and CMB power spectrum

    • 2.8.5 Predictions of CMB anisotropies

    • 2.8.6 Geometrical degeneracy

    • 2.8.7 Small-scale data and outlook

    • References



  • George F R Ellis 3 Cosmological models

  • 3.1 Introduction

    • 3.1.1 Spacetime

    • 3.1.2 Field equations

    • 3.1.3 Matter description

    • 3.1.4 Cosmology



  • 3.2 1 +3 covariant description: variables

    • 3.2.1 Average 4-velocity of matter

    • 3.2.2 Kinematic quantities

    • 3.2.3 Matter tensor

    • 3.2.4 Electromagnetic field

    • 3.2.5 Weyl tensor



  • 3.3 1 +3 Covariant description: equations

    • 3.3.1 Energy–momentum conservation equations

    • 3.3.2 Ricci identities

    • 3.3.3 Bianchi identities Contents vii

    • 3.3.4 Implications

    • 3.3.5 Shear-free dust



  • 3.4 Tetrad description

    • 3.4.1 General tetrad formalism

    • 3.4.2 Tetrad formalism in cosmology

    • 3.4.3 Complete set



  • 3.5 Models and symmetries

    • 3.5.1 Symmetries of cosmologies

    • 3.5.2 Classification of cosmological symmetries



  • 3.6 Friedmann–Lemaˆıtre models

    • 3.6.1 Phase planes and evolutionary paths

    • 3.6.2 Spatial topology

    • 3.6.3 Growth of inhomogeneity



  • 3.7 Bianchi universes (s=3)

    • 3.7.1 Constructing Bianchi universes

    • 3.7.2 Dynamical systems approach

    • 3.7.3 Isotropization properties



  • 3.8 Observations and horizons

    • 3.8.1 Observational variables and relations: FL models

    • 3.8.2 Particle horizons and visual horizons

    • 3.8.3 Small universes

    • 3.8.4 Observations in anisotropic and inhomogeneous models

    • 3.8.5 Proof of almost-FL geometry

    • 3.8.6 Importance of consistency checks



  • 3.9 Explaining homogeneity and structure

    • 3.9.1 Showing initial conditions are irrelevant

    • 3.9.2 The explanation of initial conditions

    • 3.9.3 The irremovable problem



  • 3.10 Conclusion

    • References



  • Andrei D Linde 4 Inflationary cosmology and creation of matter in the universe

  • 4.1 Introduction

  • 4.2 Brief history of inflation

    • 4.2.1 Chaotic inflation



  • 4.3 Quantum fluctuations in the inflationary universe

  • 4.4 Quantum fluctuations and density perturbations

  • 4.5 From the big bang theory to the theory of eternal inflation

  • 4.6 (P)reheating after inflation

  • 4.7 Conclusions

    • References



  • Antonio Masiero and Silvia Pascoli 5 Dark matter and particle physics

  • 5.1 Introduction

  • 5.2 The SM of particle physics

    • 5.2.1 The Higgs mechanism and vector boson masses

    • 5.2.2 Fermion masses

    • 5.2.3 Successes and difficulties of the SM



  • 5.3 The dark matter problem: experimental evidence

  • 5.4 Lepton number violation and neutrinos as HDM candidates

    • 5.4.1 Experimental limits on neutrino masses

    • 5.4.2 Neutrino masses in the SM and beyond

    • 5.4.3 Thermal history of neutrinos

    • 5.4.4 HDM and structure formation



  • 5.5 Low-energy SUSY and DM

    • 5.5.1 Neutralinos as the LSP in SUSY models

    • 5.5.2 Neutralinos in the minimal supersymmetric SM

    • 5.5.3 Thermal history of neutralinos andCDM

    • 5.5.4 CDM models and structure formation



  • 5.6 Warm dark matter

    • 5.6.1 Thermal history of light gravitinos and WDM models



  • 5.7 Dark energy,CDM and xCDM or QCDM

    • 5.7.1 CDM models

    • 5.7.2 Scalar field cosmology and quintessence

    • References



  • Renata Kallosh 6 Supergravity and cosmology

  • 6.1 M/string theory and supergravity

  • 6.2 Superconformal symmetry, supergravity and cosmology

  • 6.3 Gravitino production after inflation

  • 6.4 Super-Higgs effect in cosmology

  • 6.5 MP→∞limit

    • References



  • Arthur Kosowsky 7 The cosmic microwave background

  • 7.1 A brief historical perspective

  • 7.2 Physics of temperature fluctuations

    • 7.2.1 Causes of temperature fluctuations

    • 7.2.2 A formal description

    • 7.2.3 Tight coupling

    • 7.2.4 Free-streaming

    • 7.2.5 Diffusion damping

    • 7.2.6 The resulting power spectrum



  • 7.3 Physics of polarization fluctuations

    • 7.3.1 Stokes parameters Contents ix

    • 7.3.2 Thomson scattering and the quadrupolar source

    • 7.3.3 Harmonic expansions and power spectra



  • 7.4 Acoustic oscillations

    • 7.4.1 An oscillator equation

    • 7.4.2 Initial conditions

    • 7.4.3 Coherent oscillations

    • 7.4.4 The effect of baryons



  • 7.5 Cosmological models and constraints

    • 7.5.1 A space of models

    • 7.5.2 Physical quantities

    • 7.5.3 Power spectrum degeneracies

    • 7.5.4 Idealized experiments

    • 7.5.5 Current constraints and upcoming experiments



  • 7.6 Model-independent cosmological constraints

    • 7.6.1 Flatness

    • 7.6.2 Coherent acoustic oscillations

    • 7.6.3 Adiabatic primordial perturbations

    • 7.6.4 Gaussian primordial perturbations

    • 7.6.5 Tensor or vector perturbations

    • 7.6.6 Reionization redshift

    • 7.6.7 Magnetic fields

    • 7.6.8 The topology of the universe



  • 7.7 Finale: testing inflationary cosmology

    • References



  • Andrea Giuliani 8 Dark matter search with innovative techniques

  • 8.1 CDM direct detection

    • 8.1.1 Status of the DM problem

    • 8.1.2 Neutralinos

    • 8.1.3 The galactic halo

    • 8.1.4 Strategies for WIMP direct detection



  • 8.2 Phonon-mediated particle detection

    • 8.2.1 Basic principles

    • 8.2.2 The energy absorber

    • 8.2.3 Phonon sensors



  • 8.3 Innovative techniques based on phonon-mediated devices

    • 8.3.1 Basic principles of double readout detectors

    • 8.3.2 CDMS, EDELWEISS and CRESST experiments

    • 8.3.3 Discussion of the CDMS results



  • 8.4 Other innovative techniques

    • References



  • The DAMA Collaboration 9 Signature for signals from the dark universe

  • 9.1 Introduction

  • 9.2 The highly radiopure∼100 kg NaI(Tl) set-up

  • 9.3 Investigation of the WIMP annual modulation signature

    • 9.3.1 Results of the model-independent approach

      • in the new DAMA/NaI-3 and 4 running periods 9.3.2 Main points on the investigation of possible systematics



    • 9.3.3 Results of a model-dependent analysis



  • 9.4 DAMA annual modulation result versus CDMS exclusion plot

  • 9.5 Conclusion

    • References



  • GianLuigi Fogli 10 Neutrino oscillations: a phenomenological overview

  • 10.1 Introduction

  • 10.2 Three-neutrino mixing and oscillations

  • 10.3 Analysis of the atmospheric data

  • 10.4 Analysis of the solar data

    • 10.4.1 Total rates and expectations

    • 10.4.2 Two-flavour oscillations in vacuum

    • 10.4.3 Two-flavour oscillations in matter

    • 10.4.4 Three-flavour oscillations in matter



  • 10.5 Conclusions

    • References



  • Piero Rosati 11 Highlights in modern observational cosmology

  • 11.1 Synopsis

  • 11.2 The cosmological framework

    • 11.2.1 Friedmann cosmological background

    • 11.2.2 Observables in cosmology

    • 11.2.3 Applications



  • 11.3 Galaxy surveys

    • 11.3.1 Overview

    • 11.3.2 Survey strategies and selection methods

    • 11.3.3 Galaxy counts and evolution

    • 11.3.4 Colour selection techniques

    • 11.3.5 Star formation history in the universe



  • 11.4 Cluster surveys

    • 11.4.1 Clusters as cosmological probes

    • 11.4.2 Cluster search methods

    • 11.4.3 Determiningmand

    • References



  • Luigi Guzzo homogeneity

  • 12.1 Introduction

  • 12.2 The clustering of galaxies

  • 12.3 Our distorted view of the galaxy distribution

  • 12.4 Is the universe fractal?

    • 12.4.1 Scaling laws

    • 12.4.2 Observational evidences

    • 12.4.3 Scaling in Fourier space

    • Variance on∼ 1000 h−^1 Mpc scales 12.5 Do we really see homogeneity?

    • 12.5.1 The REFLEX cluster survey

    • 12.5.2 ‘Peaks and valleys’ in the power spectrum



  • 12.6 Conclusions

    • References



  • Marco Montuori and Luciano Pietronero 13 The debate on galaxy space distribution: an overview

  • 13.1 Introduction

  • 13.2 The standard approach of clustering correlation

  • 13.3 Criticisms of the standard approach

  • 13.4 Mass–length relation and conditional density

  • 13.5 Homogeneous and fractal structure

  • 13.6ξ(r)for a fractal structure

  • 13.7 Galaxy surveys

    • 13.7.1 Angular samples

    • 13.7.2 Redshift samples



  • 13.8(r)analysis

  • 13.9 Interpretation of standard results

    • References



  • Philippe Jetzer 14 Gravitational lensing

  • 14.1 Introduction

    • 14.1.1 Historical remarks



  • 14.2 Lens equation

    • 14.2.1 Point-like lenses

    • 14.2.2 Thin lens approximation

    • 14.2.3 Lens equation

    • 14.2.4 Remarks on the lens equation



  • 14.3 Simple lens models

    • 14.3.1 Axially symmetric lenses

    • 14.3.2 Schwarzschild lens

    • 14.3.3 Singular isothermal sphere

    • 14.3.4 Generalization of the singular isothermal sphere xii Contents

    • 14.3.5 Extended source

    • 14.3.6 Two point-mass lens



  • 14.4 Galactic microlensing

    • 14.4.1 Introduction



  • 14.5 The lens equation in cosmology

    • 14.5.1 Hubble constant from time delays



  • 14.6 Galaxy clusters as lenses

    • 14.6.1 Weak lensing

    • 14.6.2 Comparison with results from x-ray observations

    • References



  • Anatoly Klypin 15 Numerical simulations in cosmology

  • 15.1 Synopsis

  • 15.2 Methods

    • 15.2.1 Introduction

      • universe 15.2.2 Equations of evolution of fluctuations in an expanding



    • 15.2.3 Initial conditions

    • 15.2.4 Codes

    • 15.2.5 Effects of resolution

    • 15.2.6 Halo identification



  • 15.3 Spatial and velocity biases

    • 15.3.1 Introduction

    • 15.3.2 Oh, bias, bias

    • 15.3.3 Spatial bias

    • 15.3.4 Velocity bias

    • 15.3.5 Conclusions



  • 15.4 Dark matter halos

    • 15.4.1 Introduction

    • 15.4.2 Dark matter halos: the NFW and the Mooreet alprofiles

    • 15.4.3 Properties of dark matter halos

    • 15.4.4 Halo profiles: convergence study

    • References



  • Index

Free download pdf