- Silvio Bonometto 1 The physics of the early universe (an overview)
- 1.1 The physics of the early universe: an overview
- 1.1.1 The middle-age cosmology
- 1.1.2 Inflationary theories
- 1.1.3 Links between cosmology and particle physics
- 1.1.4 Basic questions and tentative answers
- John A Peacock 2 An introduction to the physics of cosmology
- 2.1 Aspects of general relativity
- 2.1.1 The equivalence principle
- 2.1.2 Applications of gravitational time dilation
- 2.2 The energy–momentum tensor
- 2.2.1 Relativistic fluid mechanics
- 2.3 The field equations
- 2.3.1 Newtonian limit
- 2.3.2 Pressure as a source of gravity
- 2.3.3 Energy density of the vacuum
- 2.4 The Friedmann models
- 2.4.1 Cosmological coordinates
- 2.4.2 The redshift
- 2.4.3 Dynamics of the expansion
- 2.4.4 Solutions to the Friedmann equation
- 2.4.5 Horizons
- 2.4.6 Observations in cosmology
- 2.4.7 The meaning of an expanding universe
- 2.5 Inflationary cosmology
- 2.5.1 Inflation field dynamics
- 2.5.2 Ending inflation
- 2.5.3 Relic fluctuations from inflation
- 2.5.4 Gravity waves and tilt vi Contents
- 2.5.5 Evidence for vacuum energy at late times
- 2.5.6 Cosmic coincidence
- 2.6 Dynamics of structure formation
- 2.6.1 Linear perturbations
- 2.6.2 Dynamical effects of radiation
- 2.6.3 The peculiar velocity field
- 2.6.4 Transfer functions
- 2.6.5 The spherical model
- 2.7 Quantifying large-scale structure
- 2.7.1 Fourier analysis of density fluctuations
- 2.7.2 The CDM model
- 2.7.3 Karhunen–Lo`eve and all that
- 2.7.4 Projection on the sky
- 2.7.5 Nonlinear clustering: a problem for CDM?
- 2.7.6 Real-space and redshift-space clustering
- 2.7.7 The state of the art in LSS
- 2.7.8 Galaxy formation and biased clustering
- 2.8 Cosmic background fluctuations
- 2.8.1 The hot big bang and the microwave background
- 2.8.2 Mechanisms for primary fluctuations
- 2.8.3 The temperature power spectrum
- 2.8.4 Large-scale fluctuations and CMB power spectrum
- 2.8.5 Predictions of CMB anisotropies
- 2.8.6 Geometrical degeneracy
- 2.8.7 Small-scale data and outlook
- References
- George F R Ellis 3 Cosmological models
- 3.1 Introduction
- 3.1.1 Spacetime
- 3.1.2 Field equations
- 3.1.3 Matter description
- 3.1.4 Cosmology
- 3.2 1 +3 covariant description: variables
- 3.2.1 Average 4-velocity of matter
- 3.2.2 Kinematic quantities
- 3.2.3 Matter tensor
- 3.2.4 Electromagnetic field
- 3.2.5 Weyl tensor
- 3.3 1 +3 Covariant description: equations
- 3.3.1 Energy–momentum conservation equations
- 3.3.2 Ricci identities
- 3.3.3 Bianchi identities Contents vii
- 3.3.4 Implications
- 3.3.5 Shear-free dust
- 3.4 Tetrad description
- 3.4.1 General tetrad formalism
- 3.4.2 Tetrad formalism in cosmology
- 3.4.3 Complete set
- 3.5 Models and symmetries
- 3.5.1 Symmetries of cosmologies
- 3.5.2 Classification of cosmological symmetries
- 3.6 Friedmann–Lemaˆıtre models
- 3.6.1 Phase planes and evolutionary paths
- 3.6.2 Spatial topology
- 3.6.3 Growth of inhomogeneity
- 3.7 Bianchi universes (s=3)
- 3.7.1 Constructing Bianchi universes
- 3.7.2 Dynamical systems approach
- 3.7.3 Isotropization properties
- 3.8 Observations and horizons
- 3.8.1 Observational variables and relations: FL models
- 3.8.2 Particle horizons and visual horizons
- 3.8.3 Small universes
- 3.8.4 Observations in anisotropic and inhomogeneous models
- 3.8.5 Proof of almost-FL geometry
- 3.8.6 Importance of consistency checks
- 3.9 Explaining homogeneity and structure
- 3.9.1 Showing initial conditions are irrelevant
- 3.9.2 The explanation of initial conditions
- 3.9.3 The irremovable problem
- 3.10 Conclusion
- References
- Andrei D Linde 4 Inflationary cosmology and creation of matter in the universe
- 4.1 Introduction
- 4.2 Brief history of inflation
- 4.2.1 Chaotic inflation
- 4.3 Quantum fluctuations in the inflationary universe
- 4.4 Quantum fluctuations and density perturbations
- 4.5 From the big bang theory to the theory of eternal inflation
- 4.6 (P)reheating after inflation
- 4.7 Conclusions
- References
- Antonio Masiero and Silvia Pascoli 5 Dark matter and particle physics
- 5.1 Introduction
- 5.2 The SM of particle physics
- 5.2.1 The Higgs mechanism and vector boson masses
- 5.2.2 Fermion masses
- 5.2.3 Successes and difficulties of the SM
- 5.3 The dark matter problem: experimental evidence
- 5.4 Lepton number violation and neutrinos as HDM candidates
- 5.4.1 Experimental limits on neutrino masses
- 5.4.2 Neutrino masses in the SM and beyond
- 5.4.3 Thermal history of neutrinos
- 5.4.4 HDM and structure formation
- 5.5 Low-energy SUSY and DM
- 5.5.1 Neutralinos as the LSP in SUSY models
- 5.5.2 Neutralinos in the minimal supersymmetric SM
- 5.5.3 Thermal history of neutralinos andCDM
- 5.5.4 CDM models and structure formation
- 5.6 Warm dark matter
- 5.6.1 Thermal history of light gravitinos and WDM models
- 5.7 Dark energy,CDM and xCDM or QCDM
- 5.7.1 CDM models
- 5.7.2 Scalar field cosmology and quintessence
- References
- Renata Kallosh 6 Supergravity and cosmology
- 6.1 M/string theory and supergravity
- 6.2 Superconformal symmetry, supergravity and cosmology
- 6.3 Gravitino production after inflation
- 6.4 Super-Higgs effect in cosmology
- 6.5 MP→∞limit
- References
- Arthur Kosowsky 7 The cosmic microwave background
- 7.1 A brief historical perspective
- 7.2 Physics of temperature fluctuations
- 7.2.1 Causes of temperature fluctuations
- 7.2.2 A formal description
- 7.2.3 Tight coupling
- 7.2.4 Free-streaming
- 7.2.5 Diffusion damping
- 7.2.6 The resulting power spectrum
- 7.3 Physics of polarization fluctuations
- 7.3.1 Stokes parameters Contents ix
- 7.3.2 Thomson scattering and the quadrupolar source
- 7.3.3 Harmonic expansions and power spectra
- 7.4 Acoustic oscillations
- 7.4.1 An oscillator equation
- 7.4.2 Initial conditions
- 7.4.3 Coherent oscillations
- 7.4.4 The effect of baryons
- 7.5 Cosmological models and constraints
- 7.5.1 A space of models
- 7.5.2 Physical quantities
- 7.5.3 Power spectrum degeneracies
- 7.5.4 Idealized experiments
- 7.5.5 Current constraints and upcoming experiments
- 7.6 Model-independent cosmological constraints
- 7.6.1 Flatness
- 7.6.2 Coherent acoustic oscillations
- 7.6.3 Adiabatic primordial perturbations
- 7.6.4 Gaussian primordial perturbations
- 7.6.5 Tensor or vector perturbations
- 7.6.6 Reionization redshift
- 7.6.7 Magnetic fields
- 7.6.8 The topology of the universe
- 7.7 Finale: testing inflationary cosmology
- References
- Andrea Giuliani 8 Dark matter search with innovative techniques
- 8.1 CDM direct detection
- 8.1.1 Status of the DM problem
- 8.1.2 Neutralinos
- 8.1.3 The galactic halo
- 8.1.4 Strategies for WIMP direct detection
- 8.2 Phonon-mediated particle detection
- 8.2.1 Basic principles
- 8.2.2 The energy absorber
- 8.2.3 Phonon sensors
- 8.3 Innovative techniques based on phonon-mediated devices
- 8.3.1 Basic principles of double readout detectors
- 8.3.2 CDMS, EDELWEISS and CRESST experiments
- 8.3.3 Discussion of the CDMS results
- 8.4 Other innovative techniques
- References
- The DAMA Collaboration 9 Signature for signals from the dark universe
- 9.1 Introduction
- 9.2 The highly radiopure∼100 kg NaI(Tl) set-up
- 9.3 Investigation of the WIMP annual modulation signature
- 9.3.1 Results of the model-independent approach
- in the new DAMA/NaI-3 and 4 running periods 9.3.2 Main points on the investigation of possible systematics
- 9.3.3 Results of a model-dependent analysis
- 9.3.1 Results of the model-independent approach
- 9.4 DAMA annual modulation result versus CDMS exclusion plot
- 9.5 Conclusion
- References
- GianLuigi Fogli 10 Neutrino oscillations: a phenomenological overview
- 10.1 Introduction
- 10.2 Three-neutrino mixing and oscillations
- 10.3 Analysis of the atmospheric data
- 10.4 Analysis of the solar data
- 10.4.1 Total rates and expectations
- 10.4.2 Two-flavour oscillations in vacuum
- 10.4.3 Two-flavour oscillations in matter
- 10.4.4 Three-flavour oscillations in matter
- 10.5 Conclusions
- References
- Piero Rosati 11 Highlights in modern observational cosmology
- 11.1 Synopsis
- 11.2 The cosmological framework
- 11.2.1 Friedmann cosmological background
- 11.2.2 Observables in cosmology
- 11.2.3 Applications
- 11.3 Galaxy surveys
- 11.3.1 Overview
- 11.3.2 Survey strategies and selection methods
- 11.3.3 Galaxy counts and evolution
- 11.3.4 Colour selection techniques
- 11.3.5 Star formation history in the universe
- 11.4 Cluster surveys
- 11.4.1 Clusters as cosmological probes
- 11.4.2 Cluster search methods
- 11.4.3 Determiningmand
- References
- Luigi Guzzo homogeneity
- 12.1 Introduction
- 12.2 The clustering of galaxies
- 12.3 Our distorted view of the galaxy distribution
- 12.4 Is the universe fractal?
- 12.4.1 Scaling laws
- 12.4.2 Observational evidences
- 12.4.3 Scaling in Fourier space
- Variance on∼ 1000 h−^1 Mpc scales 12.5 Do we really see homogeneity?
- 12.5.1 The REFLEX cluster survey
- 12.5.2 ‘Peaks and valleys’ in the power spectrum
- 12.6 Conclusions
- References
- Marco Montuori and Luciano Pietronero 13 The debate on galaxy space distribution: an overview
- 13.1 Introduction
- 13.2 The standard approach of clustering correlation
- 13.3 Criticisms of the standard approach
- 13.4 Mass–length relation and conditional density
- 13.5 Homogeneous and fractal structure
- 13.6ξ(r)for a fractal structure
- 13.7 Galaxy surveys
- 13.7.1 Angular samples
- 13.7.2 Redshift samples
- 13.8(r)analysis
- 13.9 Interpretation of standard results
- References
- Philippe Jetzer 14 Gravitational lensing
- 14.1 Introduction
- 14.1.1 Historical remarks
- 14.2 Lens equation
- 14.2.1 Point-like lenses
- 14.2.2 Thin lens approximation
- 14.2.3 Lens equation
- 14.2.4 Remarks on the lens equation
- 14.3 Simple lens models
- 14.3.1 Axially symmetric lenses
- 14.3.2 Schwarzschild lens
- 14.3.3 Singular isothermal sphere
- 14.3.4 Generalization of the singular isothermal sphere xii Contents
- 14.3.5 Extended source
- 14.3.6 Two point-mass lens
- 14.4 Galactic microlensing
- 14.4.1 Introduction
- 14.5 The lens equation in cosmology
- 14.5.1 Hubble constant from time delays
- 14.6 Galaxy clusters as lenses
- 14.6.1 Weak lensing
- 14.6.2 Comparison with results from x-ray observations
- References
- Anatoly Klypin 15 Numerical simulations in cosmology
- 15.1 Synopsis
- 15.2 Methods
- 15.2.1 Introduction
- universe 15.2.2 Equations of evolution of fluctuations in an expanding
- 15.2.3 Initial conditions
- 15.2.4 Codes
- 15.2.5 Effects of resolution
- 15.2.6 Halo identification
- 15.2.1 Introduction
- 15.3 Spatial and velocity biases
- 15.3.1 Introduction
- 15.3.2 Oh, bias, bias
- 15.3.3 Spatial bias
- 15.3.4 Velocity bias
- 15.3.5 Conclusions
- 15.4 Dark matter halos
- 15.4.1 Introduction
- 15.4.2 Dark matter halos: the NFW and the Mooreet alprofiles
- 15.4.3 Properties of dark matter halos
- 15.4.4 Halo profiles: convergence study
- References
- Index
axel boer
(Axel Boer)
#1