Statistical Methods for Psychology

(Michael S) #1

590 Chapter 16 Analyses of Variance and Covariance as General Linear Models


Exhibit 16.2 Regression solutions using all predictors for data in Table 16.2

DataAnova;
infile ‘Ex162.dat’;
input A1 B1 B2 B3 dv;
AB11 = A1 *B1;
AB12 = A1 *B2;
AB13 = A1 *B3;
Run;
Proc CorrData = Anova;
Var A1 B1 B2 B3 AB11 AB12 AB13;
Run;
Proc RegData = Anova;
Model dv = A1 B1 B2 B3 AB11 AB12 AB13;
Run;
Pearson Correlation Coefficients, N = 32
Prob > |r | under H0: Rho = 0
A1 B1 B2 B3 AB11 AB12 AB13
A1 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
B1 0.00000 1.00000 0.50000 0.50000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000
B2 0.00000 0.50000 1.00000 0.50000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000
B3 0.00000 0.50000 0.50000 1.00000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000
AB11 0.00000 0.00000 0.00000 0.00000 1.00000 0.50000 0.50000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036
AB12 0.00000 0.00000 0.00000 0.00000 0.50000 1.00000 0.50000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036
AB13 0.00000 0.00000 0.00000 0.00000 0.50000 0.50000 1.00000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036
The REG Procedure
Dependent Variable: dv
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 7 231.96875 33.13839 5.71 0.0006
Error 24 139.25000 5.80208
Corrected Total 31 371.21875
Root MSE 2.40875 R-Square 0.6249
Dependent Mean 9.34375 Adj R-Sq 0.5155
Coeff Var 25.77928
(continues)
Free download pdf