84 1 Mathematical Physics
N=6;
∑
yn= 29 .5;
∑
xn=3;
∑
x^2 n= 19
∑
xn^3 =27;
∑
xn^4 =115;
∑
xnyn= 21 .3;
∑
x^2 nyn= 158. 1
Solving (1), (2) and (3) we finda 0 = 0 .582;a 1 =− 1 .182;a 2 = 1. 556
Fig. 1.18Least square fit of the parabola
1.102C=^2 πε^0
ln
(b
a
) (1)
From propagation of errors
σc=
[(
∂c
∂b
) 2
σb^2 +
(
∂c
∂a
) 2
σa^2
] 1 / 2
(2)
∂c
∂b
=−
c
blnba
;
∂c
∂a
=
c
alnba
(3)
Using (1), (2) and (3) and simplifying
σc
c
=
[(
ln
b
a
)]− 1 / 2 [
σa^2
a^2
+
σa^2
b^2
] 1 / 2
Substitutinga=10 mm,b=20 mm,σa=1 mm andσb=1mm,σc/c=
0. 16