2.3 Solutions 107
mv^2 /r=kr (2)
solving (1) and (2)
v^2 =
(
n
m
)(
k
m
)^12
(3)
r^2 =
n
√
km
(4)
(c) E=U+T=
1
2 kr
(^2) + 1
2 mv
(^2) (5)
Substituting (3) and (4) on (5) and simplifying
E=n(k/m)^1 /^2
(d)ΔE=En−En− 1 =
(
k
m
)^12
= 1. 05 × 10 −^34
(
1 , 180
3 × 10 −^26
)^12
J
= 0 .13 eV
λ=
1 , 241
0. 13
= 9 ,546 nm
2.17 En=−
13. 6
n^2
ΔE=En+ 1 −En= 13. 6
(
1
n^2
−
1
(n+1)^2
)
=
13 .6(2n+1)
n^2 (n+1)^2
In the limitn→∞,ΔE ∝nn 4 =n^13
2.18 The wavelengthλ= 486 .1 nm corresponds to the transition energy ofE=
1241 / 486. 1 = 2 .55 eV Looking up Fig. 2.1, for the energy level diagram
for hydrogen atom, the transitionn = 4 →2 gives the energy difference
− 0. 85 −(− 3 .4)= 2 .55 eV
The line belongs to the Balmer series.
Fig. 2.1Energy level
diagram for hydrogen atom
2.19 Orbital velocity,v= e
2
2 nhε 0 ,a^0 =n
(^2) h (^2) ε 0 /πe (^2) m
Orbital frequencyf=v/ 2 πa 0