2.3 Solutions 123
EJ=[J(J+1)^2 c^2 ]/(2)(0.5)(Mpc^2 )r^2
E 2 =(2)(3)(197.3)^2 (10−^15 )^2 /(940)×(10−^10 )^2
= 0. 264 × 10 −^10 MeV
= 2. 64 × 10 −^5 eV
2.65 ΔEJ=
J^2
Io
=
J^2
μr^2
ΔEJ=hc/λ
∴λ∝μ
λ 1
λ 2
=
0. 00260
0. 00272
=
μ 1
μ 2
(1)
μ 1 =
16 × 12
16 + 12
;μ 2 =
16 x
16 +x
(2)
Using (2) in (1) and solving forx, we getx = 13 .004. Hence the mass
number is 13.
2.66 En=ω
(
n+
1
2
)
=
√
k
μ
(
n+
1
2
)
4. 5 =
1. 054 × 10 −^34
1. 6 × 10 −^19
(
573
0. 5 × 1. 67 × 10 −^27
) 1 / 2 (
n+
1
2
)
whence n = 7.75
Therefore the molecule would dissociate forn=8.
2.3.7 Commutators .....................................
2.67 (a) Writingx=i
∂
∂p
(
eipα/
(
i
∂
∂p
)
e−ipα/
)
ψ|p|
=ieipα/
[
−
iα
e
ipα
ψ(p)+e−ipα/
∂ψ(p)
∂p
]
=α+
i∂ψ(p)
∂p
=α+x
(b) IfAandBare Hermitian
(AB)†=B†A†=BA
If the product is to be Hermitian then (AB)†=ABi.e.AB=BA. Thus,
AandBmust commute with each other.