158 3 Quantum Mechanics – II
This is the continuity equation where the probability currentJ= 2 im^1 (φ∗∇φ−
φ∇φ∗)
And probability densityρ=i
2 m(
φ∗∂φ
∂t−φ∂φ∗
∂t)
For a force free particle the solution of the Klein – Gordan equation isφ=
Aei(p.x−Et)
The probability density isρ=i
2 m[(
A∗e−i(p.x−Et))
(iAE)e−i(p.x−Et)−(
Ae−i(p.x−Et))(
iA∗E)
e−i(p.x−Et)]
=
i
2 m[
A∗A(−iE)−AA∗(iE)]
=
|A|^2
2 m[E+E]=E
|A|^2
m
AsEcan have positive and negative values, the probability density could
then be negative3.6 (a) Class I: Refer to Problem 3.25
ψ 1 =Aeβx(−∞<x<−a)
ψ 2 =Dcosαx(−a<x<+a)
ψ 3 =Ae−βx(a<x<∞)Normalization implies that
∫−a−∞|ψ 1 |^2 dx+∫a−a|ψ 2 |^2 dx+∫∞
a|ψ 3 |^2 dx= 1
∫−a−∞A^2 e^2 βxdx+∫a−aD^2 cos^2 αxdx+∫∞
aA^2 e−^2 βxdx= 1A^2 e−^2 βa/ 2 β+D^2 [a+sin(2αa)/ 2 α]+A^2 e−^2 βa/ 2 β= 1Or
A^2 e−^2 βa/β+D^2 (a+sin(2αa)/ 2 α)=1(1)
Boundary condition atx=agives
Dcosαa=ae−βa (2)
Combining (1) and (2) givesD=
(
a+1
β)− 1
A=eβacosαa(
a+1
β