162 3 Quantum Mechanics – II
3.12 First the wave function is normalized
N^2∫∞
0ψ∗ψdx= 1N^2
∫∞
0(√
2 e−x
L) 2
dx= 1N= 1 /√
L
The probability of finding the particle in the regionx≥1nmis
(
1
L)∫∞
1ψ∗ψdx=∫∞
1((
1
L
)^12
e−xL) 2
dx=(
2
L
)∫∞
1e−^2 x/Ldx=−e−^2 x/L∣
∣∞
1 =e− (^2) = 0. 135
3.3.2 Schrodinger Equation. .........................
3.13
(
d^2
dr^2+
2
r+ 2 E
)
F(r)=0(1)(a) By usingF(r)=exp(−r/v)y(r), andE=− 21 ν 2 , it is easily verified that
d^2 y
dr^2=
2
v(
d
dr−
v
r)
y (2)(b)y(r)=∑∞
p= 0
aprp+^1 (3)dy
dr=
∑
ap(p+1)rp (4)d^2 y
dr^2=
∑
app(p+1)rp−^1 (5)Substitute (3), (4) and (5) in (2)Σapp(p+ 1 )rp−^1 =2
vΣap(p+1)rp− 2 ΣaprpReplacepbyp−1 in the RHS and simplify
Σapp(p+1)rp−^1 =2
vΣap− 1 (p−ν)rp−^1Comparing the coefficients ofrp−^1 on both sidesp(p+1)ap=2
v(p−v)ap− 1 (6)(c) The series in (3) will terminate whenν=nwherenis a positive integer.
Heren= 2
Using (3)y(r)=∑^1
0ap rp+^1 =a 0 r+a 1 r^2