170 3 Quantum Mechanics – II
∫a
0
ψn∗(x)ψn(x)dx= 1
A^2
∫α
0
sin^2
(nπx
a
)
dx= 1
(
A^2
2
)(
x−cos
(
2 nπx
a
))∣
∣
∣
a
0
=A^2 a= 1
Therefore,A=
(
2
a
) 1 / 2
(9)
The normalized wave function is
ψn(x)=
(
2
a
)^12
sin
(nπx
a
)
(10)
Using the value ofαfrom (7) in (3), the energy is
En=
n^2 h^2
8 ma^2
(11)
(c) probabilityp=
∫a
0 |ψ^3 (x)|
(^2) dx
=
∫ 23 a
a 3
(
2
a
)
sin^2
(
3 πx
a
)
dx=
1
3
(d)ψ(n) and probability densityP(x) distributions forn = 1 ,2and3are
sketched in Fig 3.6
Fig. 3.6
3.19 The Schrodinger equation for then–psystem in the CMS is
∇^2 ψ(r,θ,φ)+
(
2 μ
^2
)
[E−V(r)]ψ(r,θ,φ)=0(1)