3.3 Solutions 173
3.21 u=Ce−kr
∫∞
0 |u|
(^2) dr=c 2 ∫∞
0 e
− 2 kr=c^2
2 k=^1
C=
√
2 k
The probability that the neutron – proton separation in the deuteron exceeds
RisP=∫∞
R|u|^2 dr= 2 k∫∞
Re−^2 krdr=e−^2 kR=e−(2×^0.^232 ×2)≈ 0. 4
Average distance of interaction<r>=∫∞
0r|u^2 |dr= 2 k∫∞
0re−^2 krdr=
1
2 k=
1
2 × 0. 232
= 2 .16 fm3.22 The inside wave functionu 1 =Asinkris maximum atr≈R. Therefore
kR=π/ 2
or k^2 R^2 =M(V 0 −W)R^2 /^2 =π^2 / 4V 0 =π^2 ^2 c^2
4 Mc^2 R^2+W
Substitutingc= 197 .3MeV−fm, Mc^2 =940 MeV, R = 1 .5 fm and
W= 2 .2 MeV, we findV 0 ≈47 MeV3.23 <r^2 >=
∫
ψ∗r^2 ψdτ=
∫∞
0r^2
r^2(α
2 π)
e−^2 αr 4 πr^2 dr=
1
2 α^2
√
<r^2 >=1
√
2 α=
4. 3 × 10 −^15 m
√
2= 3. 0 × 10 −^15 m= 3 .0fm3.24 Referring to Problem 3.18, the energy of thenth level is
En=n^2 h^2
8 mL^2(1)
andEn+ 1 =(n+1)^2 h^2
8 ML^2(2)
ThereforeEn+ 1 −En=(2n+1)h^2
8 mL^2