182 3 Quantum Mechanics – II
<E>=<ψ|H|ψ>
=<(C 1 ψ 1 +C 2 ψ 2 )|H|(C 1 ψ 1 +C 2 ψ 2 )>
=<C 1 ψ 1 +C 2 ψ 2 |C 1 Hψ 1 +C 2 Hψ 2 |>
=<C 1 ψ 1 +C 2 ψ 2 |C 1 E 1 ψ 1 +C 2 E 2 ψ 2 |>
=C^21 E 1 +C 22 E 2
=
C^21 ω
2
+
C 223 ω
2
=
1
2
ω(C 12 + 3 C 22 )
whereω=
(
k
m
) 1 / 2
3.33 The ground state is
ψ=
(
2
a
) 1 / 2
sin(πx/a)
The wave function corresponding to momentumpis
ψi=( 2 π)−^1 /^2
∑
k
Ckeikx
The probability that the particle has momentum betweenpandp+dpis given
by the value of
|Ck|^2 , whereCkis the overlap integral
Ck=(2π)−
(^12)
(
2
a
) 1 / 2 ∫a
0
eikxsin
(πx
a
)
dx
Itegrating by parts twice,
Ck=(πa)
12 (
eika+ 1
)(
π^2 −k^2 a^2
)− 1
The required probability is
|Ck|^2 =πa
(
eika+ 1
)(
e−ika+ 1
)(
π^2 −k^2 a^2
)− 2
= 4 πa cos^2
(
ka
2
)
(
π^2 −k^2 a^2
)− 2
3.34 The transmission coefficient is given by
T=e−G (1)
G=
2
∫b
a
[2m(U(r)−E)^1 /^2 dr (2)
Put
U(r)=
zZe^2
r
(3)
for the Coulomb potential energy between the alpha particle and the residual
nucleus at distance of separationr.