182 3 Quantum Mechanics – II
<E>=<ψ|H|ψ>
=<(C 1 ψ 1 +C 2 ψ 2 )|H|(C 1 ψ 1 +C 2 ψ 2 )>
=<C 1 ψ 1 +C 2 ψ 2 |C 1 Hψ 1 +C 2 Hψ 2 |>
=<C 1 ψ 1 +C 2 ψ 2 |C 1 E 1 ψ 1 +C 2 E 2 ψ 2 |>
=C^21 E 1 +C 22 E 2=C^21 ω
2+
C 223 ω
2
=1
2
ω(C 12 + 3 C 22 )whereω=(
k
m) 1 / 2
3.33 The ground state is
ψ=(
2
a) 1 / 2
sin(πx/a)The wave function corresponding to momentumpis
ψi=( 2 π)−^1 /^2∑
kCkeikxThe probability that the particle has momentum betweenpandp+dpis given
by the value of
|Ck|^2 , whereCkis the overlap integralCk=(2π)−(^12)
(
2
a) 1 / 2 ∫a0eikxsin(πx
a)
dxItegrating by parts twice,
Ck=(πa)12 (
eika+ 1)(
π^2 −k^2 a^2)− 1
The required probability is
|Ck|^2 =πa(
eika+ 1)(
e−ika+ 1)(
π^2 −k^2 a^2)− 2
= 4 πa cos^2(
ka
2)
(
π^2 −k^2 a^2)− 2
3.34 The transmission coefficient is given by
T=e−G (1)G=2
∫ba[2m(U(r)−E)^1 /^2 dr (2)PutU(r)=zZe^2
r(3)
for the Coulomb potential energy between the alpha particle and the residual
nucleus at distance of separationr.