3.3 Solutions 195
When the boundary conditions are imposed,β=n 2 πy
a
ψy=Gsin(n 2 πz
a)
Thusψ(x,y)=ψxψy=Ksin(n 1 πx
a)
sin(n 2 πy
a)
(K=constant)
andα^2 +β^2 = 2 mE/^2 =(n 1 π
a) 2
+
(n 2 π
a) 2
orE=(
^2 π^2
2 ma^2)(
n^21 +n^22)
3.46 By Problem 3.39,E=
(
h^2
8 ma^2)(
n^2 x+n^2 y,n^2 z)
Therefore the numberNof states whose energy is equal to or less thanEis
given by the conditionn^2 x+n^2 y+n^2 z≤8 ma^2 E
h^2
The required number,N=(
n^2 x+n^2 y+n^2 z) 1 / 2
, is numerically equal to the
volume in the first quadrant of a sphere of radius(
8 ma^2 hE 2) 1 / 2
. Therefore
N=
(
1
8
)
·
(
4 π
3)(
8 ma^2 E
^2) 3 / 2
=
2 π
3(
ma^2 E
2 ^2 π^2) 3 / 2
3.47 Schrodinger’s radial equation for spherical symmetry andV=0is
d^2 ψ(r)
dr^2+
2
rdψ(r)
dr+
2 mE
^2ψ(r)= 0
Take the origin at the centre of the sphere. With the change of variable,ψ=u(r)
r(1)
The above equation simplifies to
d^2 u
dr^2+
2 mEu
^2= 0
Thesolutionis
u(r)=Asinkr+Bcoskrwherek^2 =2 mE
^2(2)
Boundary condition is:u(0)=0, becauseψ(r) must be finite atr=0. This
givesB= 0
Therefore,
u(r)=Asinkr (3)
Furtherψ(R)=u(Rr)= 0
SinkR= 0