208 3 Quantum Mechanics – II
It is seen from the last column of the table that the degeneracy D is given by
the sum of natural numbers, that is,=n(n+1)/2, if we replacenbyN+1,
D=(N+1)(N+2)/2.3.61 As the time evolves, the eigen function would be
ψ(x,t)=∑
n= 0. 1 Cnψn(x)exp(−iEnt/)
=C 0 ψ 0 (x)exp(−iE 0 t/)+C 1 ψ 1 (x)exp(−iE 1 t/)
The probability density
|ψ(x,t)|^2 =C^20 +C 12 +C 0 C 1 ψ 0 (x)ψ 1 (x)[exp(i(E 1 −E 0 )t/)
−exp(−i(E 1 −E 0 )t/)]
=C 02 +C 12 + 2 C 0 C 1 ψ 0 (x)ψ 1 (x) cosωt
where we have used the energy differenceE 1 −E 0 =ω. Thus the probability
density varies with the angular frequency.3.62
∑
n= 1 , 2 , 3
|Cn|^2 En=C 02 E 0 +C 12 E 1 +C^22 E 2=
(
1
2
)
·
ω
2+
(
1
3
)
·
3 ω
2+
(
1
6
)
·
5 ω
2=
7 ω
6.
3.63 (a)ψ 0 (x)=Aexp(−x^2 / 2 a^2 )
Differentiate twice and multiply by−^2 / 2 m
−(
^2
2 m)
d^2 ψ 0
dx^2=
(
A^2
2 ma^2)(
1 −
x^2
a^2)
exp(
−
x^2
2 a^2)
=
(
^2
2 ma^2)
ψ 0 −(
^2 x^2
2 ma^4)
ψ 0or−(
^2
2 m)
d^2 ψ 0
dx^2+
(
^2 x^2
2 ma^4)
ψ 0 =(
^2
2 ma^2)
ψ 0Compare the equation with the Schrodinger equationE=^2
2 ma^2=
ω
2
ω=ma^2(1)
ora=(
mω) 1 / 2
Same relation is obtained by settingV=^2 x^2
2 ma^4=
mω^2 x^2
2
(b)ψ 1 =Bxexp(
−x2
2 a^2)
Differentiate twice and multiply by−2
2 m−
^2
2 md^2 ψ 1
dx^2=
B^2 x^3 exp(
x^2
a)
2 ma^4+
3 B^2 exp(
−x2
2 a^2)
2 ma^2