210 3 Quantum Mechanics – II
∇^2 =
d^2
dr^2+
(
2
r)
d
dr(2)
Inserting (2) in (1) and performing the integration we get<T>=^2
2 ma 02
Buta 0 =
2
me^2
Or2
m=a^0 e2
Therefore,<T>= e
2
2 a 0
Also<E>=<T>+<V>=e2
2 a 0 −e^2
a 0 =−e(^2) / 2 a
0
3.65 The normalized eigen function for the ground state of hydrogen atom is
ψ 0 = 1 /
(
πa^30)^12
e−r/a^0wherea 0 is the Bohr’s radius(a) The probability that the electron will be formed in the volume element dτ
isp(r)dr=|ψ 0 |^2 dτ=(
e
−^2 ar 0πa^30)
. 4 πr^2 dr
=(
4
a 03)
r^2 e−^2 r/a^0 drMaximum probability is found by settingddpr= 0d
dr(
4 r^2 e−2 r
a 0
a 03)
=
(
8 r
a^30)
e−(^2) ar
0
(
1 −
r
a 0)
= 0
Thereforer=a 0
(b)<r>=∫∞
0ψ∗rψdτ=1
πa^30∫∞
0rexp(
−
2 r
a 0)
. 4 πr^2 dr
=
(
4
a 03)∫∞
0r^3 exp(
−
2 r
a 0)
drLet2 r
a 0=x;dr=a 0 dx
2
<r>=(a
0
4)∫∞
0x^3 e−xdx=(a
0
4)
3!=
3 a 0
23.66
∫
u^2210 dτ=A 22∫
e−^2 xx^2 cos^2 θr^2 sinθdθdrdφ=(
1
π)(
1
2 a 0) 3 ∫∞0exp(
−
r
a 0)(
r^2
4 a 02)
r^2 dr∫+ 1− 1cos^2 θd(cosθ)∫ 2 π0dφwhere we have putx=r/ 2 a 0. Putr/a 0 =y,dr=a 0 dy