1000 Solved Problems in Modern Physics

(Romina) #1

3.3 Solutions 233


First order correction is

ΔE=


ψ 0 ∗H′ψdτ

ψ 0 ∗ψdτ

ψ 0 ∗H′ψdτ=K^2 W

∫ a
2
0

sin^2

(n 1 πx
a

)

dx

∫a/ 2

0

sin^2

(n 2 πy
a

)

dy

=K^2 W

[

x
2


(

a
4 n 1 π

)

sin

(

2 n 1 πx
a

)]a/ 2

0

[

y
2


(

a
4 n 2 π

)

sin

(

2 n 2 πy
a

)]a/ 2

0

=

K^2 Wa^2
16
∫a

0

ψ 0 ∗ψ 0 dτ=K^2

∫a

0

∫a

0

sin^2 n 1 πx
a

sin^2 n 2 πy
a

dxdy=

k^2 a^2
4

ThereforeΔE=

K^2 W 0 a^2
16

/

K^2 a^2
4

=

W 0

4

3.3.8 Scattering (Phase Shift Analysis) .....................


3.104 Let the total wave function be


ψ=ψi+ψs (1)
whereψirepresents the incident wave andψsthe scattered wave.
In the absence of potential, the incident plane wave
ψi=Aeikz=eikz (2)
where we have dropped off A to choose unit amplitude.
Assume

ψs=

f(θ)eikr
r

(3)

which ensures inverse square r dependence of the scattered wave from the
scattering centre.
σ(θ)=|f(θ)|^2 (4)
f(θ) being the scattering amplitude.
We can write (1)

ψ=eikrcosθ+

f(θ)eikr
r

(5)

or
fθ=re−ikr(ψ−eikrcosθ)(6)
Ltr→∞
The azimuth angleφhas been omitted inf(θ) as the scattering is assumed
to have azimuthal symmetry. In the absence of potentialψiis the most
general solution of the wave equation.
∇^2 ψi+k^2 ψi=0(7)
Free download pdf