3.3 Solutions 241
Putα= 1 /aandβ=q/F(q)≈ 4 πA∫∞
0re−αrsinβr
βdrI=−
∂
∂α∫∞
0e−αrsinβrdr=− 1
β∂
∂αβ
α^2 +β^2=
1
β2 αβ
(α^2 +β^2 )^2=2 α
(α^2 +β^2 )^2=
2
α^3(
1 +
β^2
α^2)− 2
= 2 a^3 /(1+q^2 a^2 /^2 )
F(q)= 8 πAa^3 /(
1 +q^2 /q^2 o)
, whereqo=/a
thusF(q)≈ 1 /(
1 +q2
q 02) 2
(b) The characteristic radiusa=qo=
c
qoc=
197 .3MeV−fm
0. 71 × 1 ,000 MeV= 0 .278 fm3.114 f(θ)=− 2 πμ 2
∫
V(r)eiq.rd^3 r=−
μ
2 π^2∫∞
r= 0∫πθ= 0∫ 2 πφ= 0V(r)eiqrcosθr^2 sinθdθdφdr=−
μ
2 π^2∫∞
0V(r)r^2 dr∫+ 1
− 1eiqrcosθd(cosθ∫ 2 π0dφ=−
2 μ
^2∫
V(r)r^2 dr
qr[
eiqr−e−iqr
2 i]
=−
2 μ
q^2∫
rsin(qr)V(r)dr3.115 From the partial wave analysis of scattering the scattering amplitude
f(θ)=1
kΣl(2l+1)(ηlexp(2iδl)−1)/ 2 i)pl(cosθ).
For elastic scattering without absorptionηl=1, andf(θ)=1
kΣl(2l+1)[
exp(2iδl)−1)/ 2 i]
pl(cosθ)=
1
kΣl(2l+1) exp(iδl)sinδlpl(cosθ).Now forθ= 0 ,pl(cosθ)=pl(1)=1 for any value ofl, and exp(iδl)=
cosδl+isinδl. Therefore the imaginary part of the forward scattering
amplitudeIm f(0)=1
k∑
l(2l+1) sin^2 δl.