260 4 Thermodynamics and Statistical Physics
E= 3 NkT/ 2 (10)
Combining (8), (9) and (10)α=m
2 kT(11)
and A=N(α/π)^3 /^2 =N(m/ 2 πkT)^3 /^2 (12)
Using (11) and (12) in (5)
N(ν)dν= 4 πN(m/ 2 πkT)^3 /^2 ν^2 exp(−mν^2 / 2 kT)dν4.2N(ν)dν=^4 πN(m/^2 πkT)^3 /^2 ν^2 exp(−mν^2 /^2 kT)dν (1)
PutE=^12 mν^2 ,dE=mνdν (2)
Use (2) in (1) and simplify to obtainN(E)dE=2 πNE^1 /^2
(πkT)^3 /^2exp(
−
E
kT)
dE4.3 The average speed<ν>=∫∞
0 νN(ν)dν
N= 4 π( m
2 πkT) 3 / 2 ∫∞
0ν^3 exp(−mν^2 / 2 kT)dν (1)where we have used the Maxwellian distributionPutα=m
2 kT(2)
so that∫∞
0ν^3 e−αν2
dν=1
2 α^2(3)
Combining (1), (2) and (3)<ν>=(
8 kT
πm) 1 / 2
=
√
8 RT
M
(4)
wheremis the mass of the molecule,Mis the molecular weight andRthe gas
constant.4.4<ν^2 >=∫∞
0 ν(^2) N(ν)dν
N
= 4 π
( m
2 πkT
) 3 / 2 ∫∞
0ν^4 exp(−mν^2 / 2 kT)dνwithα=m
2 kTandx=αν^2 ;dx= 2 ανdνThe integral,I=∫∞
0ν^4 e−αν2
dν=1
2 α^5 /^2∫∞
0x^3 /^2 e−xdx=3
√
π
8 α^5 /^2Therefore,<ν^2 >= 4 π( m
2 πkT) 3 / 2 3 √π8(m
2 kT) 5 / 2 =
3 kT
m
<ν^2 >^1 /^2 =(3kT/m)^1 /^2