1.2 Problems 23
Fig. 1.2Saw-tooth wave
1.19 Use the result of Problem 1.18 for the Fourier series for the square wave to
prove that:
1 −
1
3
+
1
5
−
1
7
+··· =
π
4
1.20 Find the Fourier transform off(x)=
{
1 ,|x|<a
0 ,|x|>a
1.21 Use the Fourier integral to prove that:
∫∞
0
cosaxdx
1 +a^2
=
π
2
e−x
1.22 Show that the Fourier transform of the normalized Gaussian distribution
f(t)=
1
τ
√
2 π
e
−t^2
2 τ^2 , −∞<t<∞
is another Gaussian distribution.
1.2.3 Gamma and Beta Functions
1.23 The gamma function is defined by:
Γ(z)=
∫∞
0
e−xxz−^1 dx,(Re z>0)
(a) Show thatΓ(z+1)=zΓ(z)
(b) And ifzis a positive integern, thenΓ(n+1)=n!
1.24 The Beta functionB(m,n) is defined by the definite integral:
B(m,n)=
∫ 1
0
xm−^1 (1−x)n−^1 dx
and this defines a function ofmandnprovidedmandnare positive. Show
that:
B(m,n)=
T(m)T(n)
T(m+n)