456 8 Nuclear Physics – II
8.22 The mass-energy equation for the positron decay gives
MNa=MNe+ 2 me+
Tmax+Tγ
931. 5
= 21. 991385 + 2 × 0. 511 +
0. 542 + 1. 277
931. 5
= 23 .015338 amu
8.23 For electron capture^7 Be+e−→^7 Li+νe,
Q=(mBe−mLi)× 931. 5 =(7. 016929 − 7 .016004)× 931. 5 = 0 .8616 MeV
which is positive
For positron emission the Q-value must be atleast 1.02 meV which is not
available. Therefore, positron emission is not possible.
8.3.6 Fermi Gas Model ................................
8.24U=
3
5
AEF (1)
p=−
∂U
∂V
=
3
5
A
∂EF
∂V
(2)
From Fermi gas model
A=KVE^3 F/^2 (3)
Differentiating (3) with respect toV
3
2
V
√
EF
∂EF
∂V
+EF^3 /^2 = 0
whence
∂EF
∂V
=−
2
3
EF
V
(4)
Using (4) in (2)
p=
2
5
A
V
EF=
2
5
ρNEF
whereρN=A/V, is the nucleon density.
8.25 The Fermi momentum forN=Z=A/2, is
pF(n)=pF(p)=(/r 0 )(9π/8)^1 /^3
cpF=(c/r 0 )(9π/8)^1 /^3 =(197.3MeV.fm/ 1 .3fm)(9π/8)^1 /^3 =231 MeV
pF=231 MeV/c
EF=pF^2 /2M=(231)^2 /(2×940)=28 MeV
IfBis the binding energy of a nucleon
V=EF+B= 28 + 8 =36 MeV