1.3 Solutions 35
(b) If the field is solenoidal, then,∇.rF(r)= 0
∂(xF(r))
∂x
+
∂(yF(r))
∂y
+
∂(zF(r))
∂z
= 0
F+x
∂F
∂x
+F+y
∂F
∂y
+F+z
∂F
∂z
= 0
3 F(r)+x
∂F
∂r
x
r
+y
∂F
∂r
y
r
+z
∂F
∂r
z
r
= 0
3 F(r)+
(
∂F
∂r
)(
x^2 +y^2 +z^2
r
)
= 0
But (x^2 +y^2 +z^2 )=r^2 , therefore,∂∂Fr=−^3 Fr(r)
Integrating, lnF=−3lnr+lnCwhereC=constant
lnF=−lnr^3 +lnC=ln
C
r^3
ThereforeF=C/r^3. Thus, the field isA=
r
r^3
(inverse square law)
1.6 x=t,y=t^2 ,z=t^3
Therefore,∫ y=x^2 ,z=x^3 ,dy= 2 xdx,dz= 3 x^2 dx
c
A.dr=
∫
(yˆi+xzˆj+xyzkˆ).(ˆidx+ˆjdy+kˆdz)
=
∫ 1
0
x^2 dx+ 2
∫ 1
0
x^5 dx+ 3
∫ 1
0
x^8 dx
=
1
3
+
1
3
+
1
3
= 1
1.7 The two curvesy =x^2 andy^2 = 8 xintersect at (0, 0) and (2, 4). Let us
traverse the closed curve in the clockwise direction, Fig. 1.6.
∫
c
A.dr=
∫
c
[(x+y)ˆi+(x−y)ˆj].(iˆdx+ˆjdy)
=
∫
c
[(x+y)dx+(x−y)dy]
=
∫ 0
2
[(x+x^2 )dx+(x−x^2 )2xdx] (alongy=x^2 )
Fig. 1.6Line integral for a
closed curve