1.3 Solutions 37
Putx=Rcosθ,dx=−Rsinθdθ,y=Rsinθ,dy=Rcosθ,z= 0 , 0 <
θ<∫ 2 π
A.dr=− 2 R^2
∫
sin^2 θdθ−R^2
∫
cos^2 θdθ
=− 2 πR^2 −πR^2 =− 3 πR^2
1.12 (a)∇×(∇Φ)=
∣ ∣ ∣ ∣ ∣ ∣ ∣
ijk
∂
∂x
∂
∂y
∂
∂z
∂Φ
∂x
∂Φ
∂y
∂Φ
∂z
∣ ∣ ∣ ∣ ∣ ∣ ∣
=i
(
∂^2 Φ
∂y∂z
−
∂^2 Φ
∂z∂y
)
−j
(
∂^2 Φ
∂x∂z
−
∂^2 Φ
∂z∂x
)
+k
(
∂^2 Φ
∂x∂y
−
∂^2 Φ
∂y∂x
)
= 0
because the order of differentiation is immaterial and terms in brackets
cancel in pairs.
(b) To show∇.(∇×V)= 0
(
ˆi∂
∂x
+ˆj
∂
∂y
+kˆ
∂
∂z
)
.
∣ ∣ ∣ ∣ ∣ ∣
ijk
∂
∂x
∂
∂y
∂
∂z
VxVyVz
∣ ∣ ∣ ∣ ∣ ∣ =
(
ˆi∂
∂x
+ˆj
∂
∂y
+kˆ
∂
∂z
)
·
[
ˆi
∣
∣
∣
∣
∂
∂y
∂
∂z
VyVz
∣
∣
∣
∣−
ˆj
∣
∣
∣
∣
∂
∂x
∂
∂z
VxVz
∣
∣
∣
∣+
kˆ
∣
∣
∣
∣
∂
∂x
∂
∂y
VxVy
∣
∣
∣
∣
]
=
∂
∂x
∣
∣
∣
∣
∂
∂y
∂
∂z
VyVz
∣
∣
∣
∣−
∂
∂y
∣
∣
∣
∣
∂
∂x
∂
∂z
VxVz
∣
∣
∣
∣+
∂
∂z
∣
∣
∣
∣
∂
∂x
∂
∂y
VxVy
∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣
∂
∂x
∂
∂y
∂
∂z
∂
∂x
∂
∂y
∂
∂z
VxVyVz
∣ ∣ ∣ ∣ ∣ ∣
= 0
The value of the determinant is zero because two rows are identical.
1.13Φ=x^2 y− 2 xz^3
(a)∇Φ=
(
iˆ∂
∂x
+ˆj
∂
∂y
+kˆ
∂
∂z
)
(x^2 y− 2 xz^3 )
=2(xy−z^3 )ˆi+x^2 ˆj+ 6 xz^2 kˆ
(b)∇^2 Φ=
(
∂^2
∂x^2
+
∂^2
∂y^2
+
∂^2
∂z^2
)
(x^2 y− 2 xz^3 )
= 2 y− 12 xz
1.14 (a)∇(x^2 y+xz)=
(
ˆi∂
∂x
+ˆj
∂
∂y
+kˆ
∂
∂z
)
(x^2 y+xz)
=(2xy+z)ˆi+x^2 ˆj+xˆk
=−ˆi+ˆj+kˆ