44 1 Mathematical Physics
NowΓ(n)=∫∞
0 xn− (^1) e−xdx, putx=y (^2) ,dx= 2 ydy, so that
Γ(n)= 2
∫∞
0y^2 n−^1 e−y2
dyΓ(1/2)= 2
∫∞
0e−y2
dy=2
√
π
2=
√
πSo that
∫ π 20(cosθ)rdθ=√
π
2Γ
(r+ 1
2)
Γ
(r
2 +^1)
1.26 (a)B(m,n)=∫ 1
0xm−^1 (1−x)n−^1 dx (1)Putx=y
1 +y(2)
B(m,n)=∫∞
0yn−^1 dy
(1+y)m+n=
Γ(m)Γ(n)
Γ(m+n)Lettingm= 1 −n;0<n< 1
∫∞0yn−^1
(1+y)dy=Γ(1−n)Γ(n)
Γ(1)
ButΓ(1)=1 and
∫∞0yn−^1
(1+y)dy=π
sin(nπ);0<n< 1Γ(n)Γ(1−n)=π
sin(nπ)(3)
(b)|Γ(in)|^2 =Γ(in)Γ(−in)
NowΓ(n)=Γ(nn+1)Γ(−in)=Γ(1−in)
−in∴|Γ(in)|^2 =Γ(in)Γ(1−in)
−in(siniπn)
by (3)
Further sinh(πn)=isiniπn
∴|Γ(in)|^2 =π
nsinh(πn)1.3.4 Matrix Algebra
1.27 LetHbe the hermitian matrix with characteristic rootsλi. Then there exists a
non-zero vectorXisuch that