1.3 Solutions 45
HXi=λiXi (1)
NowX ̄ι′HXi=X ̄′ιλiXi=λiX ̄ι′Xi (2)is real and non-zero. Similarly the conjugate transposeX ̄′ιHXi=λ ̄ιX ̄′ιXi (3)Comparing (2) and (3),
λ ̄i=λi
Thusλiis real1.28 The characteristic equation is given by
∣ ∣ ∣ ∣ ∣ ∣
1 −λ − 11
03 −λ − 1
002 −λ∣ ∣ ∣ ∣ ∣ ∣
= 0
(1−λ)(3−λ)(2−λ)+ 0 + 0 =0(1)
orλ^3 − 6 λ^2 + 11 λ− 6 =0 (characteristic equation) (2)The eigen values areλ 1 = 1 ,λ 2 =3, andλ 3 =2.1.29 LetX=
(
x
y)
AX=
(
− 10
01
)(
x
y)
=
(
−x
−y)
It produces reflection through the origin, that is inversion. A performs the
parity operation, Fig. 1.10a.Fig. 1.10aParity operation
(inversion through origin)
BX=
(
01
10
)(
x
y)
=
(
y
x)
Here thexandycoordinates are interchanged. This is equivalent to a reflec-
tion about a line passing through origin atθ= 45 ◦,Fig.1.10bCX=(
20
02
)(
x
y)
=
(
2 x
2 y