1000 Solved Problems in Modern Physics

(Romina) #1

46 1 Mathematical Physics


Fig. 1.10bReflection about a
line passing through origin at
45 ◦


Fig. 1.10cElongating a
vector in the same direction


Here the magnitude becomes double without changing its orientation.

DX=






3

2

1

2


1

2


3

2





(

x
y

)

=

(

cos 30◦ sin 30◦
−sin 30◦cos 30◦

)(

x
y

)

=






3

2

x+

y
2

x
2

+


3

2

y





The matrixDis a rotation matrix which rotates the vector through 30◦about
thez-axis,. Fig.1.10d.

Fig. 1.10dRotation of a
vector through 30◦


1.30 The matrixA=




6 − 22

− 23 − 1

2 − 13



The characteristic equation is

|A−λI|=

∣ ∣ ∣ ∣ ∣ ∣

6 −λ − 22
− 23 −λ − 1
2 − 13 −λ

∣ ∣ ∣ ∣ ∣ ∣

= 0

This gives−λ^3 + 12 λ^2 − 36 λ+ 32 = 0
or (λ−2)(λ−2)(λ−8)= 0
The characteristic roots (eigen values) are
λ 1 = 2 ,λ 2 =2 andλ 3 = 8
Free download pdf