1.3 Solutions 55
= 2
∫
ydx= 2
∫ 2
11
xdx=2ln2= 1 .386 unitsFig. 1.14Area enclosed
between the curvesy= 1 /x
andy=− 1 /xand the lines
x=1andx= 2
1.51
∫
1
x^2 − 18 x+ 34dx=∫
1
(x−3)^2 + 25dx=(1/5) tan−^1(
x− 3
5)
1.52
∫ 1
0x^2 tan−^1 xdx=(x^3 /3) tan−^1 x|^10 − 1 / 3∫ 1
0x^3
(x^2 + 12 )dx=
π
12−
1
3
∫ 1
0[
x−x
(x^2 +1)]
dx=
π
12−
x^2
6∣
∣
∣
∣
10+
(
1
6
)
ln(x^2 +1)∣
∣
∣
∣
10
=π
12−
1
6
+
1
6
ln 21.53 (a) The required area is for the figure formed by ABDGEFA. This area is equal
to the area under the curvey=x^2 +2, that is ACEFA, minusΔBCD, plus
ΔDGE (Fig 1.15a)=∫ 2
− 1ydx−1
2
BC.CD+
1
2
DE.EG
=
∫ 2
− 1(x^2 +2)dx−1
2
. 2. 2 +
1
2
. 1. 1
= 7 .5 units
(b) The required volumeV =Volume of cylinder BDEC of heightHand
radiusrand the cone ABC. (Fig 1.15b)V=πr^2 H+1
3
πr^2 h=πr^2(
H+
h
3