1.3 Solutions 77
The volume:
V=π
∫a
0
y^2 dx
Therefore, dropping off the constant factors
K=y^2 +λy(1+y′^2 )^1 /^2
which must satisfy the Euler’s equation
∂K
∂x
−
d
dx
(K−y′
∂K
∂y′
)= 0
It is convenient to use the above form asKdoes not explicitly containx, and
∂K
∂x=0. Therefore,
K−y′
∂K
∂y′
=y^2 +λy(1+λy′^2 )
(^12)
−λyy′^2 (1+y′^2 )−
(^12)
= 0
Nowy=0atx=0 and atx=awhich can be true ifC=0. Hence
y^2 +λy(1+y′^2 )−^1 /^2 = 0
Ory=−λ(1+y′^2 )−^1 /^2
Solving fory′,
dy
dx
=
1
y
(λ^2 −y^2 )^1 /^2
Integrating,
−(λ^2 −y^2 )
1
(^2) =x−x 0
Or (x−x 0 )^2 +y^2 =λ^2
This is the equation to a sphere with the centre on thex-axis atx 0 , and of
radiusλ.
1.3.13 StatisticalDistribution..............................
1.93 (a)
∑∞
x= 0
Px=
∑∞
x= 0
e−mmx
x!
=e−m
(
1 +
m
1!
+
m^2
2!
+···
)
=e−m×e+m= 1
Thus the distribution is normalized.
(b)<x>=
∑∞
x= 0
xPx=
∑∞
x= 0
xe−mmx
x!
=
∑∞
x= 0
e−mmx
(x−1)!
=e−m
(
m+
m^2
1!
+
m^3
2!
+···
)
(∵(−1)!=∞)
=me−m
(
1 +
m
1!
+
m^2
2!
+···
)
=me−m×em=m