1.3 Solutions 79
Mx(t)=Eext=
∑∞
x= 0
extB(x)
=
∑∞
x= 0
(
N
r
)
(pet)r(1−p)N−r
=(pet+ 1 −p)N
∑(N
r
)
prqN−r
=(pet+ 1 −p)N
μ^0 n=
∂nMx(t)
∂tn
|t= 0
Thereforeμ^01 =∂∂Mt|t= 0 =Npet(q+pet)N−^1 |t= 0 =Np
Thus the mean=Np
(c)μ^02 =
∂^2 M
∂t^2
=[N(N−1)p^2 et(q+pet)N−^2 +Npet(q+pet)N−^1 ]t= 0
=N(N−1)p^2 +Np
Butμ 2 =μ^02 −(μ^01 )^2 =N(N−1)p^2 +Np−N^2 p^2
=Np−Np^2 =Np(1−p)=Npq
orσ=
√
Npq
1.95 Total counting rate/minute,m 1 = 245
Background rate/minute,m 2 = 49
Counting rate of source,m=m 1 −m 2 = 196
m 1 =
n 1
t 1
±
√
n 1
t 1
;m 2 =
n 2
t 2
±
√
n 2
t 2
; Net countm=m 1 −m 2
σ=(σ 12 +σ 22 )^1 /^2 =
(
n 1
t 12
+
n 2
t 22
) 1 / 2
=
(
m 1
t 1
+
m 2
t 2
) 1 / 2
σ=
(
m 1
t 1
+
m 2
t 2
) 1 / 2
=
(
49
100
+
245
20
) 1 / 2
= 3. 57
Percentage S.D.=mσ× 100 =^3196.^57 × 100 = 1 .8%
1.96 (a)B(x)=
N!
x!(N−x)!
pxqN−x
Using Sterling’s theorem