Calculus of variations
Theorem
If the kernel function Ft,x,xis convex inx,xthen every solution of
the EulerñLagrange equation is a global minimum.Letxbe a solution of the equation. LetΨ(y)be the value of the
functional aty.For everyythe variationψ(λ) = Ψ(x+λ(y x))=Ψ(( 1 λ)x+λy)==Zb
aL
t,( 1 λ)x+λy,( 1 λ)x
+λy ( 1 λ)Zb
aL
t,x,x+λZb
aL
t,y,y=
= ( 1 λ)ψ( 0 )+λψ( 1 ).