Optimal control, Bolza problem
ZT
0f(t,x(t),u(t))dt+φ(x(T))!maxx(t)=g(t,x(t),u(t)),x( 0 )=x
0
By the fundamental theorem of the calculusφ(x(T)) = φ(x( 0 ))+ZT
0φ^0 (x(t))x(t)dt== φ(x 0 )+ZT
0φ^0 (x(t))g(t,x(t),u(t))dt.Asx 0 is Öxed one can write the goal function as
ZT
0f(t,x(t),u(t))+φ^0 (x(t))g(t,x(t),u(t))dt!max.