Cake eating problem
VT 1 (w) = max
c 2 [ 0 ,w]βT ^2 u(c)+VT(w c)=
= max
c 2 [ 0 ,w]βT ^2 u(c)+βT ^1 u(w c)=
= βT ^2 u(c(w))+βT ^1 u(w c(w)).By the envelope theorem iff(p)$maxx g(p,x)=g(p,x(p))then
df(p)
dp =∂g
∂p(p,x(p))+∂g
∂x(p,x(p))dx(p)
dp =∂g
∂p(p,x(p)),