3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 115
EXAMPLE 3.1.5
Consider anRLCseries circuit excited byv(t)=
(
100
√
2 cos 10t
)
V, withR= 20 ,L= 1
H, andC= 0 .1 F. Use the phasor method to find the steady-state response current in the circuit.
Sketch the corresponding phasor diagram showing the circuit-element voltages and current. Also
draw the power triangle of the load.
Solution
The time-domain circuit and the corresponding frequency-domain circuit are shown in Figure
E3.1.5. The KVL equation is
V ̄=V ̄R+V ̄L+V ̄C=I ̄
(
R+jωL+
1
jωC
)
Note thatω=10 rad/s in our example, and rms values are chosen for the phasor magnitudes.
Thus,
100 0°=I ̄( 20 +j 10 −j 1 ) or I ̄=
100 0°
20 +j 9
=
100 0°
21. 93 24 .23°
= 4. 56 − 24 .23° A
Theni(t)=Re
[√
2 Ie ̄ jωt
]
, which is
i(t)=
√
2 ( 4. 56 )cos( 10 t− 24 .23°)A.
The phasor diagram is shown in Figure E3.1.5(c).
−
+−+
+
−
−
v(t) = 100 2 cos ωtC = 0.1 F V =
vR vL +−+
+
=
−
−
VR VL
vC VC
i(t)
R = 20 Ω L^ = 1 H jωL^ =^ j^10 Ω
Ω
R = 20 Ω
(a)
−
+
100 0°V I
(b)
jωC
1
j
(^1) =−j
φ = 24.23
VL = 45.6∠(90 − 24.23) = jXL I
(VL + VC)
VR + VL + VC = V = 100 ∠ 0 V
VC = 4.5 ∠−(90 + 24.23)
= jXC I
VR = 91.2 ∠−24.23 = IR
(c)
I
Figure E3.1.5(a)Time-domain circuit.(b)Frequency-domain circuit.(c)Phasor diagram.(d)Power
triangle.