124 TIME-DEPENDENT CIRCUIT ANALYSIS
I ̄=
V ̄
20 +( 10 /j ω)
V ̄C=
(
10
jω
)
I ̄=
V ̄
1 + 2 jω
Treating each Fourier-series term separately, we have the following.
- For the dc case,ω=0;VCdc=50 V.
- For the fundamental component,
v 1 (t)= 63 .7 cos( 20 πt), V ̄ 1 =
63. 7
√
2
0°
V ̄C 1 =(^63.^7 /
√
2 ) 0°
1 +j( 40 π)
=
0. 51
√
2
− 89 .5° V
and
vC 1 = 0 .51 cos( 20 πt− 89 .5°)V
- For the third harmonic (ω= 3 × 20 π) component,
v 3 (t)=− 21 .2 cos( 60 πt), V ̄ 3 =−
21. 2
√
2
0°
V ̄C 3 =−(^21.^2 /
√
2 ) 0°
1 +j 2 ( 60 π)
=−
0. 06
√
2
− 89 .8° V
and
vC 3 (t)=− 0 .06 cos( 60 πt− 89 .8°)V
- For the fifth harmonic (ω= 5 × 20 π) component,
v 5 (t)= 12 .73 cos( 100 πt), V ̄ 5 =
12. 73
√
2
0°
V ̄C 5 =
(
12. 73 /
√
2
)
0°
1 +j 2 ( 100 π)
=
0. 02
√
2
− 89 .9° V
and
vC 5 (t)= 0 .02 cos( 100 πt− 89 .9°)V
- For the seventh harmonic (ω= 7 × 20 π) component,
v 7 (t)=− 9 .1 cos( 140 πt), V ̄ 7 =−
9. 1
√
2
0°
V ̄C 7 =−(^9.^1 /
√
2 )0°
1 +j 2 ( 140 π)
=−
0. 01
√
2
− 89 .9° V
and
vC 7 (t)=− 0 .01 cos( 140 πt− 89 .9°)V
Thus,
vC(t)= 50 + 0 .51 cos( 20 πt− 89 .5°)− 0 .06 cos( 60 πt− 89 .8°)
+ 0 .02 cos( 100 πt− 89 .9°)− 0 .01 cos( 140 πt− 89 .9°)V
in which the first five nonzero terms of the Fourier series are shown.