0195136047.pdf

(Joyce) #1
3.3 LAPLACE TRANSFORM 143

f(t)=0 fort<0 and allf(t) exist fort≥0. Also note that in Table 3.3.1, functions 8 through
20 can be considered as being multiplied byu(t).
From Table 3.3.1 of Laplace transform pairs one can see that


L

[
df (t)
dt

]
=sF(s)−f

(
0 +

)
(3.3.4)

By recalling thatvL=LdiL/dtandiC=CdvC/dtand the principle of continuity of the inductor
current and the capacitor voltage, the significance of the termf( 0 +)in Equation (3.3.4) is that the
initial condition is automatically included in the Laplace transform of the derivative, and hence


TABLE 3.3.1Laplace Transform Pairs


f(t) in time domain=L-1[F(s)] ⇔ F(s) in frequency domain=Lf[(t)]


(1)
df (t)
dt sF (s)−f(^0

+)

(2)
d^2 f(t)
dt^2
s^2 F(s)−sf ( 0 +)−
df
dt
( 0 +)

(3) d

nf(t)
dtn
snF(s)−sn−^1 f( 0 +)−sn−^2 df
dt
( 0 +)−···d

n− (^1) f
dtn−^1
( 0 +)
(4) g(t)=
∫t
0
f(t)dt
F(s)
s



  • g( 0 +)
    s
    (5)
    ∫t
    0
    f(τ)g(t−τ ) dτ F (s)G(s)
    (6) u(t), unit-step function^1
    s
    (7) δ(t), unit-impulse function 1
    (8) t
    1
    s^2
    (9) t
    n− 1
    (n− 1 )!
    ,ninteger^1
    sn
    (10) ε−at^1
    s+a
    (11) tε−at
    1
    (s+a)^2
    (12) tn−^1 ε−at
    (n− 1 )!
    (s+a)n
    (13) sinωt
    ω
    s^2 +ω^2
    (14) cosωt s
    s^2 +ω^2
    (15) sin(ωt+θ)
    ssinθ+ωcosθ
    s^2 +ω^2
    (16) cos(ωt+θ)
    scosθ−ωsinθ
    s^2 +ω^2
    (17) ε−atsinωt ω
    (s+a)^2 +ω^2
    (18) ε−atcosωt
    s+a
    (s+a)^2 +ω^2
    (19) tε−atsinωt
    2 ω(s+a)
    [(s+a)^2 +ω^2 ]^2
    (20) tε−atcosωt (s+a)
    (^2) −ω 2
    [(s+a)^2 +ω^2 ]^2

Free download pdf