3.3 LAPLACE TRANSFORM 143
f(t)=0 fort<0 and allf(t) exist fort≥0. Also note that in Table 3.3.1, functions 8 through
20 can be considered as being multiplied byu(t).
From Table 3.3.1 of Laplace transform pairs one can see that
L
[
df (t)
dt
]
=sF(s)−f
(
0 +
)
(3.3.4)
By recalling thatvL=LdiL/dtandiC=CdvC/dtand the principle of continuity of the inductor
current and the capacitor voltage, the significance of the termf( 0 +)in Equation (3.3.4) is that the
initial condition is automatically included in the Laplace transform of the derivative, and hence
TABLE 3.3.1Laplace Transform Pairs
f(t) in time domain=L-1[F(s)] ⇔ F(s) in frequency domain=Lf[(t)]
(1)
df (t)
dt sF (s)−f(^0
+)
(2)
d^2 f(t)
dt^2
s^2 F(s)−sf ( 0 +)−
df
dt
( 0 +)
(3) d
nf(t)
dtn
snF(s)−sn−^1 f( 0 +)−sn−^2 df
dt
( 0 +)−···d
n− (^1) f
dtn−^1
( 0 +)
(4) g(t)=
∫t
0
f(t)dt
F(s)
s
- g( 0 +)
s
(5)
∫t
0
f(τ)g(t−τ ) dτ F (s)G(s)
(6) u(t), unit-step function^1
s
(7) δ(t), unit-impulse function 1
(8) t
1
s^2
(9) t
n− 1
(n− 1 )!
,ninteger^1
sn
(10) ε−at^1
s+a
(11) tε−at
1
(s+a)^2
(12) tn−^1 ε−at
(n− 1 )!
(s+a)n
(13) sinωt
ω
s^2 +ω^2
(14) cosωt s
s^2 +ω^2
(15) sin(ωt+θ)
ssinθ+ωcosθ
s^2 +ω^2
(16) cos(ωt+θ)
scosθ−ωsinθ
s^2 +ω^2
(17) ε−atsinωt ω
(s+a)^2 +ω^2
(18) ε−atcosωt
s+a
(s+a)^2 +ω^2
(19) tε−atsinωt
2 ω(s+a)
[(s+a)^2 +ω^2 ]^2
(20) tε−atcosωt (s+a)
(^2) −ω 2
[(s+a)^2 +ω^2 ]^2