0195136047.pdf

(Joyce) #1
3.3 LAPLACE TRANSFORM 149

v(t)

v(t) = Ri(t)
i(t)^12 R
Resistance
+− V(s)

V(s) = RI(s)
I(s)^1 R

Time − Domain Network Transformed Network in Frequency Domain

2
+−

I(s)

I(s)

I(s)

v(t)

v(t) = Ldtdi
i(t)
12 L
Inductance
+−

V(s) = LsI(s) − Li(0+)

V(s)
or

Ls Li(0+)

(^12) −+




  • I(s) =+VLs(s) i(0s
    +)
    V(s)
    i(0+)/s
    12 Ls


  • I(s)
    v(t)
    v(t) =C^1 ∫i(t)dt
    i(t)^12 C
    Capacitance
    +− V(s)
    or
    1/Csv(0+)/s
    1/Cs
    (^12) +−


  • V(s) =Cs^1 I(s) +v(0s
    +)
    V(s)
    I(s) = Cs V(s) − Cv(0+)
    Cv(0+)
    12


  • (a)
    (b)
    (c)
    Figure 3.3.2Time-domain networks and transformed network equivalents in frequency domain for
    R, L,andC.



  1. By taking the inverse Laplace transform of the frequency-domain response, obtain the
    time-domain response.


Let us illustrate the use of this procedure with some examples.


EXAMPLE 3.3.1


Consider the circuit shown in Figure E3.3.1(a) in which the switchShas been in position 1 for a
long time. Let the switch be changed instantaneously to position 2 att=0. Obtainv(t) fort≥ 0
with the use of the Laplace transform method.

Free download pdf