3.3 LAPLACE TRANSFORM 149
v(t)
v(t) = Ri(t)
i(t)^12 R
Resistance
+− V(s)
V(s) = RI(s)
I(s)^1 R
Time − Domain Network Transformed Network in Frequency Domain
2
+−
I(s)
I(s)
I(s)
v(t)
v(t) = Ldtdi
i(t)
12 L
Inductance
+−
V(s) = LsI(s) − Li(0+)
V(s)
or
Ls Li(0+)
(^12) −+
- −
I(s) =+VLs(s) i(0s
+)
V(s)
i(0+)/s
12 Ls - −
I(s)
v(t)
v(t) =C^1 ∫i(t)dt
i(t)^12 C
Capacitance
+− V(s)
or
1/Csv(0+)/s
1/Cs
(^12) +− - −
V(s) =Cs^1 I(s) +v(0s
+)
V(s)
I(s) = Cs V(s) − Cv(0+)
Cv(0+)
12 - −
(a)
(b)
(c)
Figure 3.3.2Time-domain networks and transformed network equivalents in frequency domain for
R, L,andC.
- By taking the inverse Laplace transform of the frequency-domain response, obtain the
time-domain response.
Let us illustrate the use of this procedure with some examples.
EXAMPLE 3.3.1
Consider the circuit shown in Figure E3.3.1(a) in which the switchShas been in position 1 for a
long time. Let the switch be changed instantaneously to position 2 att=0. Obtainv(t) fort≥ 0
with the use of the Laplace transform method.